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Spring 2020

1. Consider the equation
dx

dt
= rx+ ax2 − x3,

where −∞ < r <∞,−∞ < a <∞ are parameters.

(a) For each a, there is a bifurcation diagram x vs r. Sketch the qualitatively different bifurcation
diagrams that can be obtained by varying a, i.e., draw bifurcation diagrams for a < 0, a = 0,
and a > 0.

(b) Summarize your results by plotting the regions in (r, a) parameter space that correspond to
the qualitatively different classes of vector fields. Bifurcations occur on the boundaries of these
regions; identify the types of bifurcations that occur.

(a) We find the steady states of our system. Setting ẋ = 0, we have

0 = rx+ ax2 − x3

0 = x
(
r+ ax− x2

)
This yields the lines of fixed points x = 0 and r = x2 − ax = x(x− a).

To determine the stability of our fixed points, we examine the graph of the function f(x; r, a) = rx+ax2−x3.
When a = 0, we have f(x; r, 0) = −x3 + rx, which gives the following graphs for various values of r :

We see that the fixed point x = 0 is stable for r 6 0 and unstable for r > 0, and that the fixed points r = x2,
which come into existence for r > 0, are stable. So, we get the following bifurcation diagram for a = 0:
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Spring 2020 Mimmack

A supercritical pitchfork bifurcation occurs at the point (r, x) = (0, 0).

When a 6= 0, the global stability behavior of the system remains unchanged, so the behavior of our system
should only be a mild perturbation of the behavior of the case a = 0. Although the exact values of our fixed
points change, the broad image of their stability does not. So, we get the following bifurcation diagrams,
for a < 0 and a > 0, respectively:

In each of these situations, the pitchfork bifurcation from the a = 0 case splits into two separate bifurcations:
a saddle-node bifurcation and a transcritical bifurcation. The transcritical bifurcation occurs at (r, x) = (0, 0),
while the saddle-node bifurcation occurs where the fixed point r = x(x−a) = x2−ax comes into existence:

x2 − ax− r = 0 → x =
1

2

(
a±

√
a2 + 4r

)
→ r = −

a2

4

So, the saddle-node bifurcation occurs at (r, x) =
(
−a2/4, a/2

)
.

(b) The fixed points of the system are x = 0 and x = 1
2

(
a±
√
a2 + 4r

)
. Note the regions of existence:

x =
1

2

(
a±

√
a2 + 4r

)
=


DNE : a2 + 4r < 0

1 FP : a2 + 4r = 0

2 FPs : a2 + 4r > 0

So, we have saddle-node bifurcations along the line a2 + 4r = 0. We also get transcritical bifurcations
wherever either of these fixed points collide with the point x = 0 :

0 =
1

2

(
a±

√
a2 + 4r

)
a = ∓

√
a2 + 4r

a2 = a2 + 4r

r = 0

So, we have transcritcal bifurcations along the line r = 0. Altogether, this means we also get a pitchfork
bifurcation where these two bifurcations collide, at r = a = 0. So, we get the following (r, a) plot:
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Spring 2020 Mimmack

2. Consider the system of equations

dx

dt
= λx− y− xr2 + λ

x3

r

dy

dt
= x+ λy− yr2 + λ

x2y

r

where r is the polar radius, i.e., r2 = x2 + y2. Show that this system has a stable limit cycle when
λ > 0.

We begin by converting our system of equations to polar coordinates. We begin with the equation for ṙ :

rṙ = xẋ+ yẏ

rṙ = x

(
λx− y− xr2 + λ

x3

r

)
+ y

(
x+ λy− yr2 + λ

x2y

r

)
rṙ = λx2 − xy− x2r2 + λ

x4

r
+ xy+ λy2 − y2r2 + λ

x2y2

r

rṙ = λr2 − r4 +
λ

r

(
x2r2

)
ṙ = λr− r3 + λx2

Next, we find the equation for θ̇ :

r2θ̇ = xẏ− yẋ

r2θ̇ = x

(
x+ λy− yr2 + λ

x2y

r

)
− y

(
λx− y− xr2 + λ

x3

r

)
r2θ̇ = x2 + λxy− xyr2 + λ

x3y

r
−

(
λxy− y2 − xyr2 + λ

x3y

r

)
r2θ̇ = x2 + y2

r2θ̇ = r2

θ̇ = 1 (r 6= 0)

So, our system of equations is given in polar coordinates by{
ṙ = λr− r3 + λx2

θ̇ = 1.

We examine the region in which r is decreasing, that is, ṙ < 0. Note that since λ > 0,

ṙ = λr− r3 + λx2 6 λr− r3 + λ
(
x2 + y2

)
= λr− r3 + λr2.

There will always exist some r > 0 such that the −r3 term dominates. Label such a satisfactory r by R. So,

ṙ
∣∣
r=R

6 λR− R3 + λR2 < 0.

In the phase plane, flow points inward along the circle r = R. Now, we examine the region in which r is
increasing. Note that

ṙ = λr− r3 + λx2 > λr− r3 = r
(
λ− r2

)
When r > 0, this value is positive if λ > r2, that is, if 0 < r <

√
λ. Label such a satisfactory r by r̃. So,

ṙ
∣∣
r=r̃

> r̃
(
λ− r̃2

)
> 0.
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In the phase plane, flow points outward along the circle r = r̃.

Note that R could be chosen to be arbitrarily large, so long as it is large enough that ṙ
∣∣
r=R

< 0. So, we choose
it large enough such that R > r̃ as well. Then, we have a trapping region: 0 < r̃ 6 r 6 R.

By the Poincaré-Bendixon theorem, if our system is continuously differentiable over the trapping region, if
the region is closed and bounded, and if the region contains no fixed points, then it must contain a closed
orbit. The region r̃ 6 r 6 R is closed and bounded and our system is indeed continuously differentiable in
this region. Our conversion to polar coordinates showed that the only fixed point of our system is at r = 0,
and so our trapping region contains no fixed points. Therefore, we have a closed orbit in this region. Since
flow points into our trapping region rather than out of it, this limit cycle is stable.

3. Let

E
[
y(x)

]
=

∫1
0

[
d2y

dx2

]2
dx.

Derive the equation for y(x) which extremizes E subject to the constraint∫1
0

[
y(x)

]2
dx = 1

and the boundary conditions y(0) = y(1) = y ′(0) = y ′(1) = 0, where y ′ = dy/dx. Find the functions
which extremize E. What would be considered the natural boundary conditions for this problem?

We use themethod of Lagrangemultipliers. Let f = (y ′′)2 and g = y2, then define h = f+λg = (y ′′)2+λy2.
The Euler-Lagrange equation is then

∂h

∂y
−
d

dx

∂h

∂y ′
+
d2

dx2
∂h

∂y ′′
= 0.

We compute each of the components of the Euler-Lagrange equation.

∂h

∂y
= 2λy

∂h

∂y ′
= 0

d2

dx2
∂h

∂y ′′
=
d2

dx2
(2y ′′) = 2y(4).

So, our Euler-Lagrange equation becomes

y(4) + λy = 0.

Now, we find the sign of λ. We multiply our equation by y and integrate:∫1
0

yy(4) dx = −λ

∫1
0

y2 dx

yy(3)
∣∣1
0
−

∫1
0

y ′y(3) dx = −λ

∫
y2 dx (IBP)

yy(3)
∣∣1
0
− y ′y ′′

∣∣1
0
+

∫1
0

(y ′′)2 dx = −λ

∫
y2 dx (IBP again)∫1

0

(y ′′)2 dx = −λ

∫
y2 dx (boundary terms vanish)

6
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Since both of our integrals are nonnegative, we must have −λ > 0, and so λ 6 0. So, we label λ = −µ4 for
convenience. Our equation now has the form

y(4) − µ4y = 0,

which has solutions of the form

y = Aeµx + Be−µx + Ceiµx +De−iµx

y ′ = µ
(
Aeµx − Be−µx + iCeiµx − iDe−iµx

)
Our boundary conditions become

A+ B+D = 0

A− B+ C = 0

Aeµ + Be−µ + C sin(µ) +D cos(µ) = 0
Aeµ − Be−µ + C cos(µ) −D sin(µ) = 0

So, a satisfactory y(x)would have A,B,C,D that satisfy the above conditions, and we then would solve for
the value of µ by plugging the resulting equation y(x;µ) into the integral constraint∫1

0

[
y(x)

]2
= 1.

Now, if we wish to extremize E in the general case (not subject to the given integral constraint), we have the
Euler-Lagrange equation

∂f

∂y
−
d

dx

∂f

∂y ′
+
d2

dx2
∂f

∂y ′′
= 0 → y(4) = 0.

This equation has solutions of the form

y(x) = Ax3 + Bx2 + Cx+D.

Now we need to find the natural boundary conditions. In the general case, in the derivation of the Euler-
Lagrange equation of the variational problem∫1

0

f(x, y, y ′, y ′′)dx→ min /max,

we perform a one-parameter variation of y = ȳ(x, ε) from the solution ȳ(x). Defining

η(x, ε) =
∂ȳ(x, ε)

∂ε
and η ′(x, ε) =

∂ȳ ′(x, ε)

∂ε
,

and differentiating the integral

I(ε) =

∫1
0

f(x, ȳ(x, ε), ȳ ′(x, ε), ȳ ′′(x, ε))dx,

with respect to ε, we wish to arrive at

dI(ε)

dε
=

∫1
0

∂f

∂y
ηdx+

∫1
0

∂f

∂y ′
η ′ dx+

∫1
0

∂f

∂y ′′
η ′′ dx = 0.

When we perform integration by parts on the two rightmost integrals, the following boundary terms pop
out:

(1) : η

(
∂f

∂y ′
−
d

dx

∂f

∂y ′′

) ∣∣∣∣1
0

(2) : η ′
∂f

∂y ′′

∣∣∣∣1
0

7



Spring 2020 Mimmack

Wemust set both of these terms equal to zero regardless of η, and so the natural boundary conditions in the
general case are (

∂f

∂y ′
−
d

dx

∂f

∂y ′′

) ∣∣∣∣
x=0,1

= 0 and ∂f

∂y ′′

∣∣∣∣
x=0,1

= 0.

For this particular problem, since f = (y ′′)2, the natural boundary conditions are therefore

y ′′′(0) = 0, y ′′′(1) = 0, y ′′(0) = 0, y ′′(1) = 0.

4. Find the solution G(x, ξ) (the Green’s function) to the problem

d2G

dx2
−G = δ(x− ξ)

with G(0, ξ) = G(L, ξ) = 0. Use the Green’s function to compute the solution of

d2y

dx2
− y = H(x)

with y(0) = y(L) = 0, and

H(x) =

{
0 : 0 6 x 6 L

2

1 : L
2
< x 6 L

The homogenous version of our equation is

y ′′(x) − y(x) = 0,

which has solutions of the form
y = Aex + Be−x.

Plugging in the left boundary condition y(0) = 0 gives A+ B = 0, and so our first equation is

y1 = e
x − e−x.

The boundary condition y(L) = 0 gives AeL + Be−L = 0, and so we get A = −Be−2L. So, our second
equation is

y2 = e
−x − ex−2L.

So, our Green’s function has the form

G(x, ξ) =

{
1
c
y1(x)y2(ξ) : x 6 ξ
1
c
y1(ξ)y2(x) : x > ξ

Here, c = pw, where p = 1 in this problem and w is the Wronskian:

w = det
[
y1 y2
y ′1 y ′2

]
= det

[
ex − e−x e−x − ex−2L

ex + e−x −e−x − ex−2L

]
= −2+ 2e−2L.

So, our green’s function is

G(x, ξ) =

{
1
c
(ex − e−x)

(
e−ξ − eξ−2L

)
: x 6 ξ

1
c

(
eξ − e−ξ

) (
e−x − ex−2L

)
: x > ξ

where c =
(
−2+ 2e−2L

)−1 as given above.
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The solution of the given problem for x > L/2 is

yA(x) =

∫L
0

G(x; ξ)H(ξ)dξ

=

∫L
L/2

G(x; ξ)dξ

=

∫x
L/2

G(x; ξ)dξ+
∫L
x

G(x; ξ)dξ

=
1

c

(
e−x − ex−2L

) ∫x
L/2

(
eξ − e−ξ

)
dξ+

1

c

(
ex − e−x

) ∫L
x

(
e−ξ − eξ−2L

)
dξ

=
1

c

[(
e−x − ex−2L

) (
−e−L/2 − eL/2 + e−x + ex

)
+
(
ex − e−x

) (
−2e−L + e−x + e−2L+x

)]
For x 6 L/2, we get

yB(x) =

∫L
0

G(x; ξ)H(ξ)dξ

=

∫L
L/2

G(x; ξ)dξ

=
1

c

(
ex − e−x

) ∫L
L/2

(
e−ξ − eξ−2L

)
dξ

=
1

c

(
ex − e−x

) (
e−3L/2 − 2e−L + e−L/2

)
So, we have

y =

{
yB(x) : 0 6 x 6 L

2

yA(x) : L
2
6 x 6 L

5. A simple harmonic oscillator is subject to weak nonlinear damping proportional to the square of its
velocity, and its displacement y(t; ε) satisfies the nondimensionalized initial value problem

d2y

dt2
+ ε

dy

dt

∣∣∣∣dydt
∣∣∣∣+ y = 0, y(0; ε) = 1, dy

dt
(0; ε) = 0.

Use the method of multiple scales to find a leading order approximation for y(t; ε) as ε→ 0+, valid
on times t = O

(
ε−1

)
.

Hint: The function sin t| sin t| has the Fourier expansion

sin t |sin t| =
∞∑
n=1

bn sinnt, b1 =
8

3π
.

Since our expansion must be valid on times t = O
(
ε−1

)
, we set t1 = t and t2 = εt. If y = y(t1, t2), then

our equation becomes(
∂2t1 + ε2∂t1t2 + ε

2∂2t2
)
y+ ε (∂t1 + ε∂t2)y · |(∂t1 + ε∂t2)y|+ y = 0

with initial conditions

y(0, 0) = 1, (∂t1 + ε∂t2)y
∣∣
0,0

= 0.

9
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Our leading-order O (1) equation is
∂2t1y0 + y0 = 0

which yields the solution

y0 = A(t2) cos(t1 + θ(t2))
∂t1y0 = −A(t2) sin(t1 + θ(t2))

Plugging in our initial conditions yields

A(0) cos(θ(0)) = 1, A(0) sin(θ(0)) = 0.

Note that our first condition gives that A(0) 6= 0, and so our second condition therefore yields θ(0) = kπ for
some k ∈ Z. In turn, our first equation then becomes A(0) = (−1)k.

Now, we move on to the O (ε) equation:

∂2t1y1 + 2∂t1t2y0 + ∂t1y0 |∂t1y0|+ y1 = 0

We examine the y0 terms to find secular terms:

∂t1t2y0 = −A ′(t2) sin(t1 + θ(t2)) −A(t2)θ ′(t2) cos(t1 + θ(t2))

∂t1y0 |∂t1y0| = −A(t2) sin(t1 + θ(t2)) |A(t2) sin(t1 + θ(t2))|
= −A(t2) |A(t2)| · sin(t1 + θ(t2)) |sin(t1 + θ(t2))|

= −A(t2) |A(t2)| ·
∞∑
n=1

sin(nt1 + nθ(t2))

= −A(t2) |A(t2)| ·
8

3π
sin(t1 + θ(t2)) + [nonsecular terms]

So, our O (ε) equation can now be written as

∂2t1y1 + y1 =

(
2A ′(t2) +

8

3π
A(t2) |A(t2)|

)
sin(t1 + θ(t2)) + 2A(t2)θ ′(t2) cos(t1 + θ(t2)) + [nonsec terms]

So, in order to eliminate secular terms, we require

2A ′(t2) +
8

3π
A(t2) |A(t2)| = 0 and A(t2)θ

′(t2) = 0.

Recall that our initial conditions are θ(0) = kπ for some k ∈ Z, andA(0) = (−1)k, dependent on θ. Therefore
A(t2) 6= 0, and so

A(t2)θ
′(t2) = 0 → θ ′(t2) = 0 → θ(t2) = kπ, k ∈ Z.

10
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Now, we solve for A :

2A ′(t2) +
8

3π
A(t2) |A(t2)| = 0

−A ′(t2) =
4

3π
A(t2) |A(t2)|

−
A ′(t2)

A(t2) |A(t2)|
=
8

3π

− sgn(A)
∫
dA

A2
=

∫
4

3π
dt2

sgn(A) · 1
A

=
4

3π
t2 + C

1

|A|
=
4

3π
t2 + C

|A(t2)| =
1

4
3π
t2 + C

|A(t2)| =
3π

4t2 + 3π · C

Plugging in A(0) = (−1)k, or |A(0)| = 1, this becomes

1 =
1

C
→ C = 1.

So, if we assume that A = (−1)k |A|, then

|A(t2)| =
3π

3π+ 4t2
→ A(t2) = (−1)k

3π

3π+ 4t2

So, our approximation for ywould be

y ∼ A(t2) cos(t1 + θ(t2)) =
3π

3π+ 4εt
(−1)k cos(t+ kπ) = 3π

3π+ 4εt
(−1)2k cos t = 3π

3π+ 4εt
cos t.

6. Use the method of matched asymptotic expansions to find a leading-order approximation for the
solution y(x; ε) of the following boundary value problem on 0 6 x 6 1 :

εy ′′ + 2y ′ + y3 = 0, y(0; ε) = 0, y(1, ε) =
1

2
.

First, we examine the O (1) equation:

2y ′ + y3 = 0∫
dy

y3
= −

∫
1

2
dx

−
1

2
y−2 = −

1

2
x+ C

y−2 = x+ C

y−1 = ±
√
x+ C

y =
±1√
x+ C

11
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Since the coefficent of our y ′ term in our equation is positive, we expect a boundary layer at x = 0. So, we
apply the boundary condition y(1) = 1/2 to the leading-order expansion to get

1

2
= ± 1√

1+ C
→ 2 =

√
1+ C → C = 3.

So, our outer solution is given by

yout =
1√
x+ 3

.

Now, we rescale x to find the inner solution. We define x̂ = x/ε. Then, our equation becomes

ε−1y ′′ + 2ε−1y ′ + y3 = 0.

Examining the O
(
ε−1

)
equation, we get

y ′′ + 2y ′ = 0

y ′ = Ae−2x̂

y = Ae−2x̂ + B

Applying the boundary condition y(0) = 0, we get

0 = A+ B → B = −A.

So, our inner solution is given by
yin = Ae−2x̂ −A.

Now, we match our inner and outer solutions.

lim
x→0

yout = lim
x→0

1√
x+ 3

=
1√
3

lim
x̂→∞yin = lim

x̂→∞
[
Ae−2x̂ −A

]
= −A.

So, we set A = −1/
√
3, and so yoverlap = 1/

√
3. Our composite solution is given by yout + yin − yoverlap :

y ∼
1√
x+ 3

−
1√
3
e−2x/ε.

12
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1. Consider the planar system

dx

dt
= x(1− x− y),

dy

dt
= y

(
3− x−

3

2
y

)
.

(a) Give an interpretation of this system in terms of the population dynamics of species x(t) >
0, y(t) > 0.

(b) Find the equilibria with x, y > 0, determine their linearized stability, and classify them.

(c) Sketch the phase plane of the system in x > 0, y > 0.

(d) Suppose that x(0), y(0) > 0. What happens to the solution as t→ +∞? What is the interpretation
in terms of population dynamics?

(a) This system describes two species which are competing against each other for the same resources.

(b) We set ẋ and ẏ equal to zero and solve for our equilibria:

ẋ = x(1− x− y) = 0 → x= 0 or y = 1− x

ẏ = y

(
3− x−

3

2
y

)
= 0 → y= 0 or y = 2−

2

3
x

We sketch our curves in the first quadrant to see their intersections:

Only the places where the red and black lines overlap are possible equilibria. So, are equilibria are

(x, y) = (0, 0), (1, 0), and (0, 2).

13
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To determine their linearized stability, we compute the Jacobian:

J =

[
−2x+ 1− y −x

−y 3− x− 3y

]
We plug in each of our equilibria and examine the eigenvalues.

J
∣∣
(0,0)

=

[
1 0
0 3

]
→ λ = 1, 3 → Unstable Node

J
∣∣
(1,0)

=

[
−1 −1
0 2

]
→ λ = −1, 2 → Saddle (Unstable)

J
∣∣
(0,2)

=

[
−1 0
−2 −3

]
→ λ = −2,−3 → Stable Node

(c)

(d) As t → +∞, our system tends toward the equilibrium (x, y) = (0, 2). Biologically, this means species y
dominates and species x dies out.

2. A discrete dynamical system for xn ∈ R with n = 0, 1, 2, . . . depending on a parameter µ ∈ R is given
by

xn+1 = x
2
n + µ.

(a) Find the fixed points of the system and determine their linearized stability. Sketch a bifurcation
diagram for the fixed points, indicating stable fixed points by a solid line and unstable fixed
points by a dashed line.

(b) What types of bifurcations occur at the fixed points as µ increases from −∞ to∞?

(a) To find the fixed points, we set xn = xn+1 = x̃ and solve for x̃:

x̃ = x̃2 + µ

x̃2 − x̃+ µ = 0

⇓

x̃ =
1

2
± 1
2

√
1− 4µ, (exists for µ < 1/4.)

If f(x) = x2+µ, thenwe determine the linearized stability of these fixed points by plugging in x̃ to f ′(x) = 2x:

f ′(x̃+) = 1+
√
1− 4µ

f ′(x̃−) = 1−
√
1− 4µ

14
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Since |f ′(x̃+)| > 1 everywhere the equilibrium exists (all µ < 1/4), x̃+ is always unstable.

On the other hand, f ′(x̃−) is smaller than 1 in magnitude for µ > −3/4, but for µ < −3/4, we have
f ′(x̃−) < −1. So, x̃− is unstable for µ < −3/4 and stable for −3/4 < µ < 1/4.

(b) A period-doubling bifurcation occurs when f ′(x̃−) passes through −1, which occurs at µ = −3/4. Then, a
saddle-node bifurcation occurs at µ = 1/4.

3. Let

E[y(x)] =

∫1
0

[
dy

dx

]2
dx.

Find the functions y(x) for which E is extremal, subject to the constraints∫1
0

[y(x)]2 dx = 1

and
y(0) = 0, y ′(1) = 0

where y ′ = dy/dx.

We let h = y ′2 + λy2 for some λ ∈ R. Then, the Euler-Lagrange equation gives

∂h

∂y
+
d

dx

∂h

∂y ′
= 0

2λy+
d

dx
(2y ′) = 0

λy+ y ′′ = 0

We show that λ > 0 :

y ′′ = −λy∫
y ′′y = −λ

∫
y2

yy ′
∣∣1
0
−

∫
y ′2 = −λ

∫
y2 (IBP)

−

∫
y ′2 = −λ

∫
y2 (Boundary Conds)

So, we have λ = µ2, and so our equation is
y ′′ = −µ2y.

15
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Solutions to this equation are
y = A sin(µx) + B cos(µx).

The boundary condition y(0) = 0 yields B = 0, while the boundary condition y ′(1) = 0 yields

cos(µ) = 0 → µ = kπ+
π

2
, k ∈ Z.

Now, we plug back in our equation into our integral constraint:

1 =

∫1
0

y2 dx

= A2
∫1
0

cos2
[(
kπ+

π

2

)
x
]
dx

=
A2

2

∫1
0

(1+ cos [(2kπ+ π) x]) dx

=
A2

2

∫1
0

(1+ cos (πx)) dx

=
A2

2

[
1+ π sin(πx)

∣∣1
0

]
=
A2

2

So, we get A2 = 2, and so A = ±
√
2. So, our final solution is

y(x) = ±
√
2 sin

((
kπ+

π

2

)
x
)
, k ∈ Z.

4. LetD be the disk of radius a in R2, i.e. x2 + y2 6 a2. Let h(x, y) be a single valued function of x and
ywhich describes a surface above Dwhich is fixed on the boundary to

h(a cos(θ), a sin(θ)) = f(θ).

(a) Find the functional S[h(x, y)] which computes the surface area of h(x, y).

(b) Determine the equation for the function h(x, y) which minimizes S[h(x, y)].

(c) Linearize the equation in (b) and solve it subject to the boundary condition

h(a cos(θ), a sin(θ)) = cos2(θ).

(a) S[h(x, y)] =

∫∫
D

√
h2x + h

2
y + 1 dxdy

(b) We label the integrand of S by f. Then, the Euler-Lagrange equation for this problem is

∂f

∂h
−
∂

∂x

∂f

∂hx
−
∂

∂y

∂f

∂hy
= 0.

16
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Since ∂f/∂h = 0, this becomes

∂

∂x

 hx√
h2x + h

2
y + 1

+
∂

∂y

 hy√
h2x + h

2
y + 1

 = 0

hxx
√
·− 2hx(hxhxx + hyhxy)/

√
·

h2x + h
2
y + 1

+
hyy
√
·− 2hy(hyhyy + hxhxy)/

√
·

h2x + h
2
y + 1

= 0

hxx(h
2
x + h

2
y + 1) − 2hx(hxhxx + hyhxy) + hyy(h

2
x + h

2
y + 1) − 2hy(hyhyy + hxhxy) = 0

hxx − h
2
xhxx + h

2
yhxx − 4hxhyhxy + h

2
xhyy − h

2
yhyy + hyy = 0

(c) Linearizing the equation in (b) yields

hxx + hyy = 0 → ∇2h = 0 (Laplace’s Equation)

Solutions to Laplace’s Equation on the interior of the disk have the form

h(r, θ) =
α0

2
+

∞∑
n=1

rn (αn cos(nθ) + βn sin(nθ)) .

Since h(a, θ) = cos2(θ), our goal is to find the coefficients α0, αn, βn such that

cos2 θ =
α0

2
+

∞∑
n=1

an (αn cos(nθ) + βn sin(nθ)) .

Notice that cos2 θ = 1/2 + 1/2 · cos(2θ). Written in this format, our coefficients are obvious: α0 = 1,
α2 = 1/2a

2, and all other coefficients are zero. So, we end up with

h(r, θ) =
1

2
+
r2

2a2
cos(2θ).

5. Use the WKB method to find an approximate solution to the following problem:

εy ′′ + 2y ′ + 2y = 0,

with y(0) = 0 and y(1) = 1.

The WKB expansion for y and its associated derivatives is (assuming α > 0):

y ∼ eθ(x)/εα (y0 + εαy1)

y ′ ∼ eθ(x)/εα
(
ε−αθxy0 + y

′
0 + θxy1 + · · ·

)
y ′′ ∼ eθ(x)/εα

(
ε−2αθ2xy0 + ε

−α
(
θxxy0 + 2θxy

′
0 + θ

2
xy1

)
+ · · ·

)
Plugging this into our equation and canceling the exponential terms yields

ε
(
ε−2αθ2xy0 + ε

−α
(
θxxy0 + 2θxy

′
0 + θ

2
xy1

))
+ 2

(
ε−αθxy0 + y

′
0 + θxy1

)
+ 2 (y0 + ε

αy1) = 0

ε−2α+1θ2xy0︸ ︷︷ ︸
1

+ ε−α+1
(
θxxy0 + 2θxy

′
0 + θ

2
xy1

)︸ ︷︷ ︸
2

+ ε−α2θxy0︸ ︷︷ ︸
3

+ 2y ′0 + 2θxy1 + 2y0︸ ︷︷ ︸
4

+ εα2y1︸ ︷︷ ︸
5

= 0

As we assume α > 0, we need only match terms 1 , 3 , and 4 for leading order.

1 ∼ 3 : − 2α+ 1= −α → α = 1 → 1 3 : O(1/ε), 4 : O(1) X

17
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Since α = 1 works, we don’t need to check the rest. We examine our leading-order equation, O(1/ε):

θ2xy0 + 2θxy0 = 0

θx(θx + 2)y0 = 0

θx(θx + 2) = 0

θx = 0,−2

So, our two options for θ(x) are
θ(x) = 0 and θ(x) = −2x.

Now, we examine our equation of next-leading order, O(1) :

θxxy0 + 2θxy
′
0 + θ

2
xy1 + 2y

′
0 + 2θxy1 + 2y0 = 0

θxxy0 + 2θxy
′
0 + 2y

′
0 + 2y0 + θx(θx + 2)y1 = 0

θxxy0 + 2θxy
′
0 + 2y

′
0 + 2y0 = 0

First, we consider the case θ(x) = 0. With this θ, our equation becomes

2y ′0 + 2y0 = 0

y ′0 = −y0

y0 = Ae
−x

Next, we consider the case θ(x) = −2x. With this θ, our equation becomes

−4y ′0 + 2y
′
0 + 2y0 = 0

y ′0 = y0

y0 = Be
x

Putting these together, we get the approximation

y ∼ Ae−x + Be−2x/ε+x.

Now, we plug in our boundary conditions to solve for A,B.

y(0) = 0 → 0 = A+ B → y ∼ A
(
e−x − e−2x/ε+x

)
y(1) = 1 → 1 = A

(
e−1 − e1−2/ε

)
So, in the end, our final approximation is

y ∼
e−x − e−2x/ε+x

e−1 − e1−2/ε

6. Consider themotionof adampedpendulum. The evolutionof thepositionof the endof thependulum
y(t) is described by

ε
d2y

dt2
+
dy

dt
+ sin(y(t)) = 0, y(0) = ε, y ′(0) = 0,

where ε� 1. Use the method of multiple scales to find an approximate solution to the IVP above.

We begin by rescaling, setting y = εx so that our boundary conditions are of order 1:

ε3ẍ+ εẋ+ sin(εx) = 0, x(0) = 1, x ′(0) = 0

18
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Expanding sin(εx) about x = 0, we get

ε3ẍ+ εẋ+ εx−
1

6
ε3x3 + · · · = 0

ε2ẍ+ ẋ+ x−
1

6
ε2x3 + · · · = 0

Now, we let t1 = t and t2 = εαt, where α 6= 0. Then, our equation becomes

ε2
(
∂2t1 + 2ε

α∂t1∂t2 + ε
2α∂2t2

)
x+ (∂t1 + ε

α∂t2) x+ x−
1

6
ε2x3 = 0(

ε2∂2t1 + 2ε
α+2∂t1∂t2 + ε

2+2α∂2t2︸ ︷︷ ︸
1

)
x+

(
∂t1︸︷︷︸
2

+ εα∂t2︸ ︷︷ ︸
3

)
x+ x−

1

6
ε2x3 = 0

Matching for leading order, if we try 1 ∼ 3 , we get 2 + 2α = α, which yields α = −2. This would indeed
make these terms leading order, so we go with it. Our equation becomes(

ε2∂2t1 + 2∂t1t2 + ε
−2∂2t2

)
x+

(
∂t1 + ε

−2∂t2
)
x+ x−

1

6
ε2x3 = 0

Our leading order equation is O
(
ε−2

)
:

∂2t2x+ ∂t2x = 0 → ∂t2x0 = A(t1)e
−t2 → x0 = A(t1)e

−t2 + B(t1)

The boundary condition x(0) = 1 yields A(0) + B(0) = 1. Our other boundary condition is

(∂t1 + ε
−2∂t2)x

∣∣
0,0

= 0 → A(0) = 0

So, our boundary conditions are A(0) = 0 and B(0) = 1. Next, we add a term to our approximation:
x = x0 + ε

2x1. Our equation is now(
ε2∂2t1 + 2∂t1t2 + ε

−2∂2t2
)
(x0 + ε

2x1) +
(
∂t1 + ε

−2∂t2
)
(x0 + ε

2x1) + x0 + ε
2x1 −

1

6
ε2(x0 + ε

2x1)
3 = 0

Our next-leading order equation is O (1) :

2∂t1t2x0 + ∂
2
t2
x1 + ∂t1x0 + ∂t2x1 + x0 = 0(

∂2t2x1 + ∂t2x1
)
+ 2∂t1t2x0 + ∂t1x0 + x0 = 0

Our partial derivatives of x0 are

∂t1x0 = A
′(t1)e

−t2 + B ′(t1)

∂t1t2x0 = −A ′(t1)e
−t2

So, our equation is(
∂2t2x1 + ∂t2x1

)
− 2A ′(t1)e

−t2 +A ′(t1)e
−t2 + B ′(t1) +A(t1)e

−t2 + B(t1) = 0

So, in order to eliminate secular terms, we require

−A ′(t1) +A(t1) = 0 → A = c1e
t1

B ′(t1) + B(t1) = 0 → B = c2e
−t1

The boundary conditions A(0) = 0 and B(0) = 1 yield c1 = 0 and c2 = 1. So, we have A = 0, B = e−t1 . In
total, our final solution is therefore

x ∼ e−t → y ∼ εe−t.
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1. Consider a rigid, flat object, of massm and length `, attached to a torsional spring of stiffness κ in the
presence of wind of speed v (see Fig. 1). The equations of motion are

m`2

4

d2θ

dt2
= −κθ+ vc

`

2
sin(θ),

where c is a drag constant so that vc has units of force. Assume that all constants listed above are
positive (but keep in mind that θ(t) may be negative).

(a) Use non-dimensionalization to show that the qualitative behavior of the system is defined by a
single non-dimensional parameter.

(b) Show that there is a conserved quantity.

(c) As wind speed v increases from 0, find a critical value of the non-dimensional parameter at
which a bifurcation occurs, and identify the type of bifurcation.

(d) Sketch the phase portrait at: (i) a wind speed just below the bifurcation, and (ii) a wind speed
just after the bifurcation.

(a) First, we examine the dimensions of the parameters in our equation:

[m] =M [`] = L [κ] =
ML2

T2
[v] =

L

T
[c] =

M

T

Since θ is unitless, we only need to work with t. We define the non-dimensional variable t̃ and characteristic
timescale tc so that t = tct̃. Then, our equation becomes

m`2

4

1

t2c

d2θ

dt̃2
= −κθ+ vc

`

2
sin(θ)

d2θ

dt̃2
= −4

κ

m`2
t2cθ+ 2

vc`

m`2
t2c sin(θ)

d2θ

dt̃2
= −4

κ

m`2
t2cθ+ 2

vc

m`
t2c sin(θ)
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In the context of the problem, it seems more likely that we might encounter a windspeed of zero (v = 0)
than a spring of zero stiffness (κ = 0), so we avoid using v in our characteristic timescale. So, we set

t2c =
m`2

2κ

(
verify dimensions: [tc] =

√
ML2

ML2/T2
= T

)
Now, our equation is

d2θ

dt̃2
= −2θ+

vc`

κ
sin θ.

We define the parameter µ = vc`/κ and verify that it is nondimensional:

[µ] =
L/T ·M/T · L
ML2/T2

= 1

So, our final, nondimensionalized equation is

θ̈ = −2θ+ µ sin θ.

(b) To show there’s a conserved quantity, we go for the classic method of multiplying our equation by θ̇ on each
side:

θ̈θ̇ = (−2θ+ µ sin θ) θ̇
d

dt

(
1

2
θ̇2
)

=
d

dt

(
−θ2 − µ cos θ

)
1

2
θ̇2 = −θ2 − µ cos θ+ C

1

2
θ̇2 + θ2 + µ cos θ = C.

So, we have a conserved quantity E(θ, θ̇) = θ̇2/2+ θ2 + µ cos θ.

(c) As v increases from 0, so does µ. We reduce our second-order ODE to a system of first-order ODEs:{
θ̇ = ψ

ψ̇ = −2θ+ µ sin θ

So, our equilibria occur when ψ = 0 and when 2θ = µ sin θ. Comparing the graphs of θ and (µ/2) · sin θ,
we see that we go from one fixed point to 3 fixed points when µ passes through 1:

µ = 1
2

µ = 1 µ = 3
2

Since we go from 1 fixed point to 3 fixed points, and since the stability of our "inner" fixed point goes from
stable to unstable as we add fixed points, we have a supercritical pitchfork bifurcation at µ = 1.

(d) When µ is just below 1, we have a single stable fixed point at (θ,ψ) = (θ, θ̇) = (0, 0). Since this is a
conservative system, the only stable fixed points we have are centers, and so our phase portrait is a series of
nested circles.
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After our bifurcation, we have 3 fixed points. Our inner fixed point at (θ, θ̇) = (0, 0) is unstable (and
therefore a saddle) and our outer two are stable (centers), and so our phase portrait is as follows:

2. Consider the following predator-prey model:

dx

dt
= x(x(1− x) − y),

dy

dt
= y(x− a),

where x is the (positive) non-dimensional population of prey, y is the (positive) non-dimensional
population of predators, and a is a (positive) non-dimensional parameter.

(a) Sketch the nullclines in the first quadrant, x, y > 0.

(b) Find and classify all fixed points.

(c) Find and classify all bifurcations that occur as a varies (assume a > 0).

(d) Show that a stable limit cycle exists for some values of a.

(a) Our x-nullclines are where ẋ = 0: this occurs when x = 0 or y = x(1− x).

Our y-nullclines are x = a or y = 0.

(b) We have a total of 2, sometimes 3, fixed points. Two fixed points which we always have are (x, y) = (0, 0)
and (1, 0). When a 6 1, we have the additional fixed point (a, a(1− a)).
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To classify our fixed points, we first compute the Jacobian.

J =

[
−3x2 + 2x− y −x

y x− a

]
.

First, we examine (0, 0).

J
∣∣
(0,0)

=

[
0 0
0 −a

]
The eigenvalues are −a and 0, so linear stability analysis fails. However, we do know that since a > 0, that
(0, 0)must be either a saddle point or a stable node. Graphically, along the line y = 0 close to (0, 0), the flow
in the x-direction is positive, and so this point must be a saddle.

Now, we examine (1, 0).

J
∣∣
(1,0)

=

[
−1 0
0 1− a

]
Our eigenvalues are −1 and 1− a, so this point is a saddle point if a < 1 and a stable node if a > 1.

Finally, we examine (a, a(1− a)):

J
∣∣
(a,a(1−a))

=

[
−3a2 + 2a− a(1− a) −a

a(1− a) 0

]
=

[
a(1− 2a) −a
a(1− a) 0

]
Its characteristic equation is

λ2 − a(1− 2a)λ+ a2(1− a) = 0

which gives eigenvalues

λ =
1

2

(
a(1− 2a)±

√
a2(1− 2a)2 − 4a2(1− a)

)
=
1

2

(
a(1− 2a)± a

√
4a2 − 3

)
.

These eigenvalues are complex when 4a2 − 3 < 0, that is, a <
√
3/2. In this situation, they have positive

real part for 1 − 2a > 0, that is, a < 1/2, and negative real part for a > 1/2. Finally, in the case where our
eigenvalues are real, we must have a >

√
3/2 > 1/2, and so a(1 − 2a) is negative. In this case, one of our

eigenvalues will always be negative. The other will be positive when

a(1− 2a) + a
√
4a2 − 3 > 0

a
(
(1− 2a) +

√
4a2 − 3

)
> 0

1− 2a+
√
4a2 − 3 > 0√
4a2 − 3 > 2a− 1

4a2 − 3 > 4a2 − 4a+ 1

a > 1.

So, the fixed point (a, a(1− a)) is classified as:
unstable spiral a < 1/2

stable spiral 1/2 < a <
√
3/2

stable node
√
3/2 < a < 1

saddle a > 1

(c) When a passes through 1, we get a transcritical bifurcation as the points (a, (a(1 − a)) and (1, 0) swap
stability.

When a passes through 1/2, we have a Hopf bifurcation as the stability of (a, a(1 − a)) swaps. When we
go from a stable spiral to an unstable spiral, a stable limit cycle must appear, and so this Hopf bifurcation is
supercritical.
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(d) As shown in previous parts, due to the fact we have a Hopf bifurcation at a = 1/2 and since the point
(a, a(1− a)) is an unstable spiral when a < 1/2, we have a stable limit cycle in this region.

3. An annular plate with inner and outer radii a < b, respectively, is held at temperature B at its outer
boundary and satisfies the boundary condition ∂u/∂r = A at its inner boundary, where A,B are
constants. Find the temperature if it is at a steady state.

Hint: It satisfies the two-dimensional Laplace equation and depends only on r. You can also use the
fact that the Laplace operator can be expressed in the polar coordinate (r, θ) as:

∆ =
d2

dr2
+
1

r

d

dr
+
1

r2
d2

dθ2
.

The equation we need to solve is ∆u = 0. Since u is not dependant on θ, we may rewrite this as

urr +
1

r
ur = 0.

We define w(r) = ur. Now, we wish to solve the equation

w ′(r) +
1

r
w(r) = 0.

This is a separable differential equation:

dw

w
= −

∫
dr

r

lnw = − ln r+ C

w =
c1

r

Now, we solve for u:

u ′(r) =
c1

r

u(r) = c1 ln r+ c2

We plug in our boundary conditions to solve for c1, c2. The inner boundary condition ur(a) = A gives:

A =
c1

a
→ c1 = Aa.

So, our equation becomes
u(r) = Aa ln r+ c2.

Our second boundary condition u(b) = B gives

B = Aa lnb+ c2 → c2 = B−Aa lnb.

So, our solution is given by
u(r, θ) = Aa ln

( r
b

)
+ B.

4. Let ω be positive, but not an integer multiple of π, and consider the following boundary value
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problem on the unit interval [0, 1] :

f ′′ +ω2f = g, f ′(0) = 0 = f ′(1).

(a) Find the Green’s function for this boundary value problem.

(b) Discuss what happens if we try this withω = 0.

(a) The homogeneous version of the problem is given by

f ′′ = −ω2f,

which has solutions of the form

f = A sin(ωx) + B cos(ωx)
f ′ = A cos(ωx) − B sin(ωx)

Plugging in the left boundary condition gives A = 0, so our fist solution is

f1 = cos(ωx).

Now, we plug in the right boundary condition. This yields

A cosω− B sinω = 0 → B = A
cosω
sinω

So our second solution is
f2 = sin(ωx) + cosω

sinω cos(ωx)

Our Green’s function then has the form

G(x, ξ) =

{
1
c
f1(x)f2(ξ) : x 6 ξ
1
c
f1(ξ)f2(x) : x > ξ

where c = pw, p = 1 for this problem, and w is the Wronskian

w = det
[
f1 f2
f ′1 f ′2

]
= det

[
cos(ωx) sin(ωx) + cosω

sinω cos(ωx)
−ω sin(ωx) ω cos(ωx) − ω cosω

sinω sin(ωx)

]
= ω cos2(ωx) − ω cosω

sinω cos(ωx) sin(ωx) +ω sin2(ωx) + ω cosω
sinω cos(ωx) sin(ωx)

= ω.

So, our Green’s function is given by

G(x, ξ) =

{
1
ω

cos(ωx)
(
sin(ωξ) + cosω

sinω cos(ωξ)
)

: x 6 ξ
1
ω

cos(ωξ)
(
sin(ωx) + cosω

sinω cos(ωx)
)

: x > ξ

(b) Ifω = 0, then our homogeneous problem is simply f ′′ = 0, which has solutions of the form

f(x) = Ax+ B.

Imposing either boundary condition leads to A = 0, and so our left and right equations (and thus our
Green’s function) are constant.
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5. Let A be a symmetric matrix and let λ0 be a simple (i.e. multiplicity one) eigenvalue of A with
corresponding eigenvector v0. Derive an expression for the eigenvalue, λ, up to order ε in the limit
of small ε to the problem

Av + εF(v) = λv

that is λ0 at leading order.

We assume v ∼ v0 + εv1 and λ ∼ λ0 + ελ1. Then, our equation becomes

A(v0 + εv1) + εF(v0 + εv1) = (λ0 + ελ1)(v0 + εv1)

Our leading-order equation is
Av0 = λ0v0.

Next, our O (ε) equation is

Av1 + F(v0) = λ0v1 + λ1v0.

Since A is symmetric, we use the fact that its eigenvectors are orthogonal. So, our O (ε) equation becomes:

Av1 + F(v0) = λ0v1 + λ1v0
vᵀ
0Av1 + vᵀ

0F(v0) = λ0v
ᵀ
0v1 + λ1v

ᵀ
0v0

(Av0)ᵀ v1 + vᵀ
0F(v0) = λ0v

ᵀ
0v1 + λ1v

ᵀ
0v0

λ0vᵀ
0v1 + vᵀ

0F(v0) = λ0v
ᵀ
0v1 + λ1v

ᵀ
0v0

vᵀ
0F(v0) = λ1v

ᵀ
0v0

λ1 =
vᵀ
0F(v0)
vᵀ
0v0

.

6. The van der Pol oscillator,

εu̇ = v+ u−
u3

3

v̇ = −u

exhibits periodic relaxation oscillations. The oscillation exhibits two time scales (a fast and slow time
scale) for small ε.

Let f(u) = u3/3− u. The following information about fmay be helpful:

f ′(±1) = 0
f(±1) = ∓2/3
f(±2) = ±2/3

(a) Draw the nullclines in the phase plane (uv-plane), sketch the the limit cycle for small ε, and label
the regions of fast and slow dynamics on the limit cycle.

(b) Compute the period of the oscillation at leading order as ε→ 0.

(a) Setting v̇ = 0 gives the v-nullcline u = 0. Along this line, we have u̇ = v/ε, which is very large for ε � 1.
Next, setting u̇ = 0 gives the u-nullcline v = f(u) = u3/3 − u = u/3 · (u +

√
3)(u −

√
3), which has zeros

at u = 0,±
√
3. Along this line, v̇ has the opposite sign as u, and is generally small compared to the motion

along the v-nullcline. This yields the following images of the phase plane, for the nullclines and the limit
cycle respectively:
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1. Suppose a bead of mass m slides frictionlessly on a hoop of radius R. If we then spin the hoop at
constant angular velocity ω about an axis parallel to the force of gravity (see Fig. 1), the bead obeys
the following non-linear second order differential equation:

d2θ

dt2
−ω2 sin θ cos θ+ g

R
sin θ = 0,

where g is the acceleration of gravity, θ(t) is the bead’s angular position on the hoop (with θ = 0
being at the bottom), and t is time.

(a) Use non-dimensionalization to show that the qualitative behavior of the system is defined by a
single non-dimensional parameter.

(b) Find all fixed points, determine their stability and classify them as a function of that parameter.

(c) Sketch a bifurcation plot (i.e., sketch the fixed points as a function of the parameter, indicate the
stability of the fixed points, and label any bifurcations that occur). Use the Lyapunov definition
of stability for this part.

It may or may not be useful to know that the energy of the system can be written as

E = mg(R− R cos θ) + m

2

(
R2 sin2 θ+ R2

(
dθ

dt

)2)
.

The Lyapunov definition of stability is that a fixed point is stable if all trajectories starting
sufficiently close to the fixed point remain within an arbitrarily small distance of the fixed point.

(a) We examine the dimensions of our given parameters:

[ω] =
1

T
[g] =

L

T2
[R] = L

Since θ is dimensionless, we only need to nondimensionalize t. We define the characteristic timescale tc
and let t̃ be the dimesionless value such that t = tct̃. Then our equation becomes

1

t2c

d2θ

dt̃2
−ω2 sin θ cos θ+ g

R
sin θ = 0

d2θ

dt̃2
−ω2t2c sin θ cos θ+

g

R
t2c sin θ = 0

Since ωmay be 0, we avoid using it in our characteristic timescale and instead let t2c = R/g. We verify that
this has units of time:

[tc] =

√
L

L/T2
= T
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Returning to our equation, we now have

d2θ

dt̃2
−
ω2R

g
sin θ cos θ+ sin θ = 0.

We define the parameter µ = ω2R/g and verify that it’s dimensionless:

[µ] =
1/T2 · L
L/T2

= 1

So, our dimensionless equation (dropping our tildes) is

θ̈ = µ sin θ cos θ− sin θ.

(b) We reduce our second-order ODE to a system of two first-order ODEs:{
θ̇ = ψ

ψ̇ = µ sin θ cos θ− sin θ = sin θ(µ cos θ− 1)

We will choose the range of θ as θ ∈ (−π, π]. Our first equation is only zero when ψ = θ̇ = 0. Our
second equation is zero whenever sin θ = 0 (which is when θ = 0, π) or when cos θ = 1/µ, which occurs for
θ = ± cos−1(1/µ). So, our fixed points are (θ, θ̇) = (0, 0), (π, 0), and (± cos−1(1/µ), 0), noting that the last
pair of fixed points only exists for µ > 1.

To find their linear stability, we compute the Jacobian.

J =

[
0 1

µ
(
cos2 θ− sin2 θ

)
− cos θ 0

]
.

First, we examine (0, 0). In this case, our Jacobian becomes

J
∣∣
(0,0)

=

[
0 1

µ− 1 0

]
→ λ2 − (µ− 1) = 0 → λ = ±

√
µ− 1

So, we have the following classification:

(0, 0) is a
{
saddle (unstable) µ > 1

linear center (linearly stable) 0 6 µ < 1

Next, we examine (π, 0). Now, our Jacobian becomes

J
∣∣
(π,0)

=

[
0 1

µ+ 1 0

]
→ λ2 − (µ+ 1) = 0 → λ = ±

√
µ+ 1

Since µ > 0 always, we have (π, 0) is a saddle point and thus unstable.

Finally, we examine (± cos−1(1/µ), 0). We use the trig identity sin(cos−1(x)) =
√
1− x2.

J
∣∣
(± cos−1(1/µ),0) =

[
0 1

µ
(
1/µ2 − (1− 1/µ2)

)
− 1/µ 0

]
=

[
0 1

1/µ− µ 0

]
Our eigenvalues are therefore λ = ±

√
1/µ− µ. Since this pair of fixed points only occurs for µ > 1,

the expression under our radical is always negative (except when µ = 1 exactly, in which case we have
zero eigenvalues). So, we have a linear center (and thus linearly stable) when µ > 1. When µ = 1, it is
unclassifiable.
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(c) If our system is a conservative system, then linear center will be true centers and therefore Lyapunov stable.
So, we show that there exists a conserved quantity. I was unable to find a conserved quantity using the
given expression for the total energy of the system, but using the original ODE, we get

θ̈ = ω2 sin θ cos θ− g

R
sin θ

θ̈θ̇ =
(
ω2 sin θ cos θ− g

R
sin θ

)
θ̇

d

dt

[
θ̇2

2

]
=
d

dt

[
ω2

2
sin2 θ+ g

R
cos θ

]
θ̇2

2
=
ω2

2
sin2 θ+ g

R
cos θ+ C

θ̇2

2
−
ω2

2
sin2 θ− g

R
cos θ = C

So we have a conserved quantity, and therefore our system is conservative. So, our linear centers are
Lyapunov stable.

Since θ̇ = 0 for each of our fixed points and is unaffected by µ, we draw a two-dimensional bifurcation
diagram in µ and θ alone:

Dashed lines indicate unstable fixed points and solid lines indicate fixed points. A supercritical pitchfork
bifurcation occurs at µ = 1, θ = 0.

2. A solid box, with sides of unequal length, obeys Euler’s equations when tossed in the air:

Iω̇+ω× Iω = 0

where, for simplicity, we neglect gravity. In this equation, I is the inertia tensor (defined below) and
ω is the angular velocity vector.

For a box with length a, height b, and width c, the inertia tensor (in Cartesian coordinates) is

I =

 m
12
(a2 + b2) 0 0

0 m
12
(c2 + b2) 0

0 0 m
12
(a2 + c2)


and the corresponding angular velocity vector is

ω =

 ωx
ωy
ωz

 .
For the following, assume a > c > b, and ‖ω‖ = 1.
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(a) Find all fixed point(s).

(b) Use linear stability analysis to classify the fixed point(s), i.e., stable node, unstable node, center,
stable spiral, unstable spiral, saddle.

(a) First, we must write Euler’s equations as a regular system of ODEs. We begin by computing the cross
productω× Iω. We denote each of the diagonal entries in I by Ix, Iy, Iz.∣∣∣∣∣∣

î ĵ k̂
ωx ωy ωz
Ixωx Iyωy Izωz

∣∣∣∣∣∣ =
∣∣∣∣ ωy ωz
Iyωy Izωz

∣∣∣∣ î− ∣∣∣∣ ωx ωz
Ixωx Izωz

∣∣∣∣ ĵ+ ∣∣∣∣ ωx ωy
Ixωx Iyωy

∣∣∣∣ k̂
= ωyωz(Iz − Iy)̂i−ωxωz(Iz − Ix)̂j+ωxωy(Iy − Ix)k̂

So, our system of ODEs is
ω̇x = ωyωz · (Iy − Iz)/Ix = ωyωz · (b2 − a2)/(b2 + a2)
ω̇y = ωxωz · (Iz − Ix)/Iy = ωxωz · (c2 − b2)/(c2 + b2)
ω̇z = ωxωy · (Ix − Iy)/Iz = ωxωy · (a2 − c2)/(a2 + c2)

The fixed points of our system (which are really fixed lines/axes) are then given by

(x, 0, 0), (0, y, 0), and (0, 0, z), for all x, y, z ∈ R.

(b) We examine the Jacobian:

J =

 0 ωz
b2−a2

b2+a2
ωy

b2−a2

b2+a2

ωz
c2−b2

c2+b2
0 ωx

c2−b2

c2+b2

ωy
a2−c2

a2+c2
ωx

a2−c2

a2+c2
0


First, we plug in (x, 0, 0):

J
∣∣
(x,0,0)

=

 0 0 0

0 0 xc
2−b2

c2+b2

0 xa
2−c2

a2+c2
0

 → −λ

(
λ2 − x2

c2 − b2

c2 + b2
· a
2 − c2

a2 + c2

)
= 0

So,

λ = 0,±

√
x2 · c

2 − b2

c2 + b2
· a
2 − c2

a2 + c2

Since a > c > b, the object under our radical is positive, and so we have one zero eigenvalue, one real,
positive eigenvalue, and one real, negative eigenvalue. This equilibrium is unstable.

Next, we plug in (0, y, 0):

J
∣∣
(0,y,0)

=

 0 0 yb
2−a2

b2+a2

0 0 0

ya
2−c2

a2+c2
0 0

 → −λ

(
λ2 − y2

b2 − a2

b2 + a2
· a
2 − c2

a2 + c2

)
= 0

So,

λ = 0,±

√
y2 · b

2 − a2

b2 + a2
· a
2 − c2

a2 + c2

Since a > c > b, this object under the radical is negative, and so we have one zero eigenvalue and one pure
imaginary pair. Because the real parts of all these eigenvalues are zero, our equilibrium is hyperbolic, and
sowhile it’s considered to be linearly stable, we can’t say anything about the true stability of this equilibrium.
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Finally, we plug in (0, 0, z). The overall pattern will continue, and we will get

λ = 0,±

√
z2 · b

2 − a2

b2 + a2
· c
2 − b2

c2 + b2

Since a > c > b, the object under the radical is negative. So, just like above, our equilibrium is hyperbolic,
and so while it’s linearly stable, we can’t say anything about its true stability.

3. Find a planar curve (x, y) = (x(t), y(t)) that minimizes the following functional:

I =

∫1
0

m

(
ẋ2 + ẏ2

2
− gy

)
dt

wherem,g are positive constants, (x(0), y(0)) = (0, 0), and (x(1), y(1)) = (a, 0).

[Physically, this is a problem to find a trajectory of a projectile of massm that starts at (0, 0) and hits
(a, 0) at time t = 1 under gravity.]

In the given functional, our independent variable is t, and we have two different functions which are
dependent on t: x(t), y(t). So, if we label our integrand as L, we get two Euler-Lagrange equations to solve:

∂L

∂x
−
d

dt

∂L

∂ẋ
= 0

∂L

∂y
−
d

dt

∂L

∂ẏ
= 0

Examining our first Euler-Lagrange equation, we have Lx = 0 and Lẋ = mẋ, so our equation becomes

−mẍ = 0

ẋ = c1

x = c1t+ c2.

Plugging in our boundary conditions x(0) = 0 and x(1) = a, we get

x(t) = at.

Now, examining our second Euler-Lagrange equation, we have Ly = −mg and Lẏ = mẏ. So, our equation
becomes

−mg−mÿ = 0

g+ ÿ = 0

ẏ = −gt+ c1

y = −
g

2
t2 + c1t+ c2.

Plugging in the boundary conditions y(0) = y(1) = 0, we get

y =
g

2

(
−t2 + t

)
.

So, the planar curve that minimizes our functional is

(x(t), y(t)) =
(
at,

g

2

(
−t2 + t

))
.
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4. Consider the Regular Sturm-Liouville Problem on the unit interval [0, 1]:

d2f

dx2
+ λf = 0, f(0) = 0, f(1) + f ′(1) = 0.

(a) Find the eigenvalues and eigenfunctions of this RSL system.

[Hint: Those eigenvalues are the solutions of some transcendental (also known as secular) equa-
tion.]

(b) Expand the constant function 1 on [0, 1] into the series of the eigenfunctions obtained in part (a).

(a) Our RSL problem can be rewritten in the form

d

dx

[
P(x)f ′

]
+
[
Q(x) + λR(x)

]
f = 0,

for P(x) = 1, Q(x) = 0, and R(x) = 1. Since P and R are both positive, we may rewrite λ in the form λ = µ2.
So, the general solution to the above differential equation is

f(x) = A cos(µx) + B sin(µx).

We plug in our first boundary condition, f(0) = 0:

A cos(0) + B sin(0) = 0 → A = 0 → f(x) = B sin(µx)

Now we plug in the second boundary condition, f(1) + f ′(1) = 0:

B sin(µ) + Bµ cos(µ) = 0 → µ = − tan(µ)

So, the eigenfunctions of this RSL system are fn(x) = sin(µnx), with eigenvalues µn being the solutions of
the transcendental equation µ = − tanµ.

(b) The goal is to find constants cn such that

1 =

∞∑
n=1

cn sin(µnx).

Such constants are given by:

cn =
〈1, sin(µnx)〉

〈sin(µnx), sin(µnx)〉

=

∫1
0 sin(µnx)dx∫1
0 sin

2(µnx)dx

=
(1− cos(µn))/µn
1/2− sin(2µn)/4µn

=
4(1− cos(µn))
2µn − sin(2µn)
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5. The modified Bessel function In(x) for n an integer has the integral representation

In(x) =
1

π

∫π
0

exp (x cos θ) · cos(nθ)dθ.

Find the leading order asymptotic expansion for In(x) as x→∞. Youmayfind the following integrals
useful: ∫∞

−∞ exp
(
−ax2

)
dx =

√
π

a
, a > 0; Γ(x) =

∫∞
0

tx−1e−t dt.

If we label g(θ) = cos θ and f(θ) = cos(nθ), then exg(θ) is maximized about θ = 0. So, we expand f and g
about θ = 0 :

f(θ) ∼ 1

g(θ) ∼ 1−
1

2
θ2

Then, our integral is approximated by

In(x) =
1

π

∫π
0

cos(nθ) · exp (x cos θ) dθ

∼
1

π

∫∞
0

exp
(
x

(
1−

1

2
θ2
))

dθ

=
1

2π

∫∞
−∞ exp

(
x−

x

2
θ2
)
dθ

=
ex

2π

∫∞
−∞ exp

(
−
x

2
θ2
)
dθ

=
ex

2π

√
π

x/2
(hint)

=
ex√
2πx

6. (a) Show that all of the solutions to

ü+ u+ εu3 = 0, ε > 0

are periodic in time. [Hint: One could show that all nontrivial trajectories in the phase plane are
closed curves.]

(b) For ε = 0, the period of the oscillation is 2π. Find the leading ε-dependent correction to the
period in the limit of of small ε for solutions that pass through the point

u(t0) = A, u̇(t0)(0) = 0,

where t = t0 is some time.
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(a) We multiply our equation by u̇:

üu̇+ uu̇+ εu3u̇ = 0

d

dt

(
1

2
u̇2 +

1

2
u2 +

ε

4
u4
)

= 0

1

2
u̇2 +

1

2
u2 +

ε

4
u4 = C,

where C is some constant. The lefthand side of our equation is a conserved quantity, E(u, u̇), which is
constant on trajectories. If we label u̇ = v, then we can write

1

2
v2 +

1

2
u2 +

ε

4
u4 = C,

which describes a closed curve in (u, v)-space.

(b) We use the Poincaré-Lindstedt method. Let x = ω(ε)t, whereω(ε) = 1+ εω1. We rewrite our equation in
terms of the new variable x :

ω2u ′′ + u+ εu3 = 0(
1+ 2εω1 + ε

2ω21
)
u ′′ + u+ εu3 = 0

We assume u ∼ u0 + εu1 and examine the leading-order O (1) equation:

u ′′0 + u0 = 0 → u0 = C cos(x+ θ), C, θ ∈ R.

Now, we examine the O (ε) equation:

2ω1u
′′
0 + u ′′1 + u ′1 + u

3
0 = 0

We expand our u0 terms:

2ω1u
′′
0 + u30 = −2ω1C cos(x+ θ) + C3 cos3(x+ θ)

= −2ω1C cos(x+ θ) + C3

4

[
3 cos(x+ θ) + cos(3x+ 3θ)

]
So, in order to eliminate secular terms, we require

−2ω1C+
3

4
C3 = 0 → ω1 =

3

8
C2.

Now, we use our initial conditions to solve for C. The condition u ′(ωt0) = 0 gives

−Cω sin(ωt0 + θ) = 0 → ωt0 + θ = kπ → θ = kπ−ωt0.

Then, the condition u(ωt0) = A gives

C cos(ωt0 −ωt0 + kπ) = A → C · (−1)k = A → C = (−1)kA.

Putting this all together, we get

u ∼ (−1)kA cos (ωt−ωt0 + kπ) = A cos (ωt−ωt0) ,

which has period
2π

ω
= 2π

(
1+ ε

3

8
A2
)−1
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1. Consider the oscillator equation
ẍ+ F(x, ẋ)ẋ+ x = 0,

where F(x, ẋ) < 0 if r 6 a and F(x, ẋ) > 0 if r > b, with r2 = x2 + ẋ2 and a < b. Show that there is at
least one closed orbit in the region a < r < b.

First, we convert this to a system of two first-order ODEs.{
ẋ = y

ẏ = −F(x, y)y− x

Next, we convert to polar coordinates. We don’t need to look at the change in the θ direction, only the r
direction, so we compute ṙ = xẋ/r+ yẏ/r:

ṙ =
xy− F(x, y)y2 − xy

r

=
−F(x, y)y2

r

Since −y2 6 0 for all y, we have that ṙ > 0 if r 6 a and ṙ 6 0 if r > b. So, flow is inward (or tangent) along
the line r = b and outward (or tangent) along the line r = a, and so we have a trapping region in a 6 r 6 b.
By the Poincare-Bendixon theorem, there must be at least one closed orbit in the region a < r < b.

2. Consider the system of ordinary differential equations

dx

dt
= x(x− 2y)

dy

dt
= y(2x− y)

(a) Show that (x, y) = (0, 0) is the unique fixed point of the system.

(b) Use linear stability analysis to classify the fixed point at (x, y) = (0, 0). What can you conclude
about the stability of (0, 0) based on this analysis?

(c) Sketch the phase portrait of the system and describe the stability of (x, y) = (0, 0).

(a) If ẋ = 0, then we must have either x = 0 or x = 2y. If ẏ = 0, then we must have either y = 0 or y = 2x. We
set our two nontrivial expressions equal to each other:

y = 2(2y) → −3y = 0 → y = 0, x = 0
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So, the only fixed point in our system is (x, y) = (0, 0).

(b) We compute the Jacobian.

J =

[
2x− 2y −2x
2y 2x− 2y

]
Plugging in (x, y) = (0, 0) yields the zero matrix, and so we have two zero eigenvalues. This equilibrium is
hyperbolic, and so linear stability analysis tells us nothing.

(c) First, we draw the nullclines and figure out the direction and intensity of motion along them.

The x-nullclines are x = 0 and x = 2y. If x = 0, then ẏ = −y2 6 0, and if x = 2y, then ẏ = 3y2 > 0.

The y-nullclines are y = 0 and y = 2x. If y = 0, then ẋ = x2 > 0, and if y = 2x, then ẋ = −3x2 6 0.

Filling in the trajectories, we get the following phase portrait:

The fixed point (0, 0) is semi-stable: it is attracting in all regions except for in the second quadrant, where
both x > 0 and y 6 0.

3. Suppose you are given a string of length L. Suppose you arrange it to lie along a function, f(x), where
f(0) = 0. Of all possible potential arrangements of the string, which one maximizes the volume
enclosed by it, V , when it is rotated about the x-axis?

DO NOT look for a closed form solution. Instead, leave your answer as a differential equation,
boundary conditions, and a sufficient number of constraint equations to allow a clever person with
a computer to find a solution.
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We set up the problem using the equation for the volume of a solid of revolution:

V =

∫b
0

π(f(x))2 dx, where
∫b
0

√
1+ f ′(x)2 dx = L,

and f(b) is our free endpoint, 0 < b < L. We use the method of Lagrange multipliers and get the integral∫b
0

(
πf2 + λ

√
1+ f ′2

)
︸ ︷︷ ︸

L

dx,

for which the Euler-Lagrange equations yield

∂L

∂y
=
d

dx

∂L

∂y ′

2π · f(x) = d

dx

(
λf ′(x)√
1+ (f ′(x))2

)
.

The natural boundary conditions for free endpoints require

∂L

∂y ′

∣∣∣∣
x=b

= 0 → λf ′(b)√
1+ (f ′(b))2

= 0 → f ′(b) = 0.

4. A plucked string, fixed at both ends, obeys the differential equation

utt = c
2uxx − aut

with boundary conditions u(0, t) = u(L, t) = 0, and initial conditions u(x, 0) = f(x) and ut(x, 0) = 0.
In these equations, u is the local displacement of the string at position x, and c is a constant (t is time).
When the constant a is zero, this is the wave equation; here, you will examine the effect of a > 0.

(a) Write the solution to the differential equation.

(b) What happens to the solution as t→∞?

(c) Give a possible physical interpretation of the term aut.

(a) We use separation of variables, writing u(x, t) = X(x)T(t). Then, our differential equation can be rewritten
in the form

XT ′′ = c2X ′′T − aXT ′

XT ′′ + aXT ′ = c2X ′′T

T ′′

T
+ a

T ′

T
= c2

X ′′

X

So, for some constant λ ∈ R, we have
T ′′

T
+ a

T ′

T
= c2

X ′′

X
= λ.

We examine the X equation first.

X ′′ −
λ

c2
X = 0

Since this equation is of the form [pX ′] ′ + [q + λr]X = 0 with p and r having opposite signs, we have
λ = −µ2 < 0. So, we rewrite our equation accordingly:

X ′′ +
(µ
c

)2
X = 0
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Solutions have the form
X = A cos

(µ
c
x
)
+ B sin

(µ
c
x
)

The boundary condition u(0, t) = 0 is equivalently X(0) = 0, which yields A = 0. We plug in the boundary
condition u(L, t) = 0 as X(L) = 0 to get

B sin
(µ
c
L
)
= 0 → µL

c
= nπ → µn =

nπc

L
, n ∈ N.

So, for any n ∈ N, we have
Xn(x) = sin

(nπ
L
x
)
.

Now, we examine our T equation.

T ′′ + aT ′ + µ2T = 0

Examining the characteristic equation of this ODE, we have

k± =
−a±

√
a2 − 4µ2

2
,

which yields solutions of the form
T = c1e

k+t + c2e
k−t.

The boundary condition ut(x, 0) = 0 is equivalently T ′(0) = 0, which yields

c1k+ + c2k− = 0 → c2 = −c1
k+

k−
,

So for every n ∈ N, the function Tn has the form

Tn(t) = e
k+t −

k+

k−
ek−t = exp

(
−a+

√
a2 + 4λn
2

· t

)
−

−a+
√
a2 + 4λn

−a−
√
a2 + 4λn

exp
(
−a−

√
a2 + 4λn
2

· t

)
.

Putting this together, for any constants cn, we have

u(x, t) =

∞∑
n=1

cnXn(x)Tn(t) =

∞∑
n=1

cn sin
(nπ
L
x
)[
ek+t −

k+

k−
ek−t

]
.

Finally, we use our last boundary condition u(x, 0) = f(x), which yields our constants cn.

u(x, 0) =

∞∑
n=1

cn sin
(nπ
L
x
)(
1−

k+

k−

)
= f(x)

Since the sin(nπx/L) form an orthogonal basis, we can compute the cn as follows:

cn

(
1−

k+

k−

)
=

〈sin(nπx/L), f(x)〉
〈sin(nπx/L), sin(nπx/L)〉 =

2

L

∫L
0

sin
(nπx
L

)
f(x)dx

So, our final solution can be expressed in the form

u(x, t) =

∞∑
n=1

cn sin
(nπ
L
x
)[
ek+t −

k+

k−
ek−t

]
,

cn =
2

L
(
1− k+

k−

) ∫L
0

sin
(nπx
L

)
f(x)dx,

k± =
−a±

√
a2 − 4n2π2c2/L2

2
.
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(b) As t→∞, the ek+t term wins out over the ek−t term. This term will always have negative real part, and so
our solution will decay to 0 over time.

(c) The aut term is a damping term, causing the solution to decay over time.

5. Consider projectile motion with air resistance. The (dimensional) ODE for x(t), the height of the
object, is

d2x

dt2
= −

gR2

(x+ R)2
−

k

x+ R

dx

dt
,

where g is the gravitational constant, R is the radius of the earth, and k is a non-negative constant
related to the air resistance. Suppose an object is launched from the surface (x(0) = 0) at a low
velocity dx

dt
|t=0 = v0 (with v0 small).

(a) Non-dimensionalize the above equation by finding appropriate re-scalings of x and t and define
(two) small parameters in terms of your scaling choices. [HINT: Your choice of scaling should
give the familiar physical problemvalidwhen the initial velocity or displacement ismuch smaller
than R and air resistance is negligible.]

(b) Using the non-dimensionalized equations, find the leading order asymptotic expansion for the
solution. [HINT: Your expansion should be in orders of the small parameter you defined above
that is independent of the air-resistance parameter k.]

(c) What equation would you need to solve to find the solution to the next highest order in the small
parameter, include initial conditions, but DO NOT solve the equation.

(a) We define the characteristic time and length scales xc and tc so that x = xcx̃ and t = tct̃. Then, we can
rewrite our equation:

xc

t2c

d2x̃

dt̃2
= −

gR2

(xcx̃+ R)2
−

k

xcx̃+ R

xc

tc

dx̃

dt̃

xc

tc

dx̃

dt̃

∣∣∣∣
t̃=0

= v0

d2x̃

dt̃2
= −

gR2t2c
xc(xcx̃+ R)2

−
ktc

xcx̃+ R

dx̃

dt̃

dx̃

dt̃

∣∣∣∣
t̃=0

= v0 ·
tc

xc

The obvious choice for xc is xc = R. Our equation becomes

d2x̃

dt̃2
= −

gt2c
R(x̃+ 1)2

−
ktc

R (x̃+ 1)

dx̃

dt̃

dx̃

dt̃

∣∣∣∣
t̃=0

= v0 ·
tc

R

We now choose tc = R/v0. Our equation becomes

d2x̃

dt̃2
= −

gR

v20

1

(x̃+ 1)2
−
k

v0

1

x̃+ 1

dx̃

dt̃

dx̃

dt̃

∣∣∣∣
t̃=0

= 1

v20
gR

d2x̃

dt̃2
= −

1

(x̃+ 1)2
−
kv0

gR

1

x̃+ 1

dx̃

dt̃

dx̃

dt̃

∣∣∣∣
t̃=0

= 1

So, we define the two nondimensional parameters

ε =
v20
gR
, η =

kv0

gR

and so we drop the tildes in our equation and rewrite it in completely nondimensional form as

εẍ+
η

x+ 1
ẋ+

1

(x+ 1)2
= 0, x(0) = 0, ẋ(0) = 1.
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(b) We assume x ∼ x0 + εαx1. examining the leading order equation, we have

η

x0 + 1
ẋ0 +

1

(x0 + 1)2
= 0∫

(x0 + 1)dx0 = −

∫
1

η
dt

1

2
x20 + x0 = −

1

η
t+ C

Plugging in x(0) = 0 yields C = 0. So, we now have

1

2
x20 + x0 +

1

η
t = 0

x20 + 2x0 +
2

η
t = 0

The quadratic formula yields

x0 =
−2±

√
4− 8

η
t

2
= −1±

√
1−

2

η
t

Since our height is positive, we naturally choose the positive square root. So, our leading order asymptotic
expansion is

x ∼ −1+

√
1−

2

η
t.

(c) We rewrite our equation in terms of x0 + εαx1:

εẍ+
η

x+ 1
ẋ+

1

(x+ 1)2
= 0

εẍ(x+ 1)2 + η(x+ 1)ẋ+ 1 = 0

ε(ẍ0 + ε
αx1)(x

2
0 + 2ε

αx0x1 + ε
2αx21 + 2x0 + 2ε

αx1 + 1) + η(x0 + ε
αx1 + 1)(ẋ0 + ε

αẋ1) + 1 = 0

The clear choice for α is α = 1. Then, our O(ε) equation is

ẍ0
(
x20 + 2x0 + 1

)
+ η (x1ẋ0 + x0ẋ1 + x1) = 0

with initial conditions
x1(0) = 0, ẋ1(0) = 0.

6. Determine thefirst terms in the inner andouter expansions for the followingboundary valueproblem:

εy ′′ − (2x+ 1)y ′ + 2y = 0

with y(0) = 1, y(1) = 0, and ε� 1. Construct a first-order uniformly valid expansion for y(x).

We begin with solving the first-order equation equation for our outer expansion.

−(2x+ 1)y ′ + 2y = 0

y ′

y
=

2

2x+ 1

ln(y) = ln(2x+ 1) + C
y = C(2x+ 1)
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Plugging in y(0) = 1 yields C = 1, so y = 2x + 1, but then we cannot fit our other condition, y(1) = 0. So,
we suspect a boundary layer at x = 1. For now, we have yout ∼ 2x+ 1.

To solve for our inner solution, we rescale x, assuming α > 0:

x̂ =
x− 1

εα
→ dy

dx
=
dy

dx̂

dx̂

dx
= ε−α

dy

dx̂

So, we now write y ′ as dy/dx̂, and our boundary value problem becomes

ε1−2αy ′′ − (2εαx̂+ 3) ε−αy ′ + 2y = 0

ε1−2αy ′′︸ ︷︷ ︸
1

− 2x̂y ′︸︷︷︸
2

− 3ε−αy ′︸ ︷︷ ︸
3

+ 2y︸︷︷︸
2

= 0

We match terms.

(1) ∼ (2) : 1− 2α = 0 → α = 1/2 → (1), (2) : O(1), (3) : O(ε−1/2) (×)
(1) ∼ (3) : 1− 2α = −α → α = 1 → (1), (3) : O(ε−1), (2) : O(1) (X)

(2) ∼ (3) : α = 0 (×)

The clear choice is α = 1. So, our equation may be rewritten as

ε−1 (y ′′ − 3y ′) − 2x̂y ′ + 2y = 0.

Our leading-order expression gives

y ′′ − 3y ′ = 0

y ′′ = 3y ′

y ′ = c1e
3x̂

y = c1e
3x̂ + c2

Rewriting in terms of x, we get

yin ∼ c1 exp
(
3(x− 1)

ε

)
+ c2.

We solve for our previously unmet boundary condition: y(1) = 0:

0 = c1 + c2 → c2 = −c1

Therefore, we have
yin ∼ C

(
exp

(
3(x− 1)

ε

)
− 1

)
.

Now, we match.

lim
x→1

yout = lim
x→1

2x+ 1 = 3

lim
x→−∞yin = lim

x→−∞C
(
exp

(
3(x− 1)

ε

)
− 1

)
= −C

So, we have C = −3, and yoverlap = 3. Putting this together, we have

y ∼ yout + yin − yoverlap

= 2x+ 1− 3 exp
(
3(x− 1)

ε

)
+ 3− 3

= 2x+ 1− 3 exp
(
3(x− 1)

ε

)
.
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1. Consider the system of ordinary differential equations

dx

dt
= x(1− x2 − y2) − 2y(1+ x)

dy

dt
= y(1− x2 − y2) + 2x(1+ x)

(a) Use the function V(x, y) = (1 − x2 − y2)2 like a Lyapunov function to prove the existence of an
asymptotically stable closed orbit.

(b) Is the asymptotically stable closed orbit a limit cycle? Briefly justify your answer

(a) We examine the time derivative of V :
dV

dt
=
dV

dx

dx

dt
+
dV

dy

dy

dt

= 2(1− x2 − y2)(−2x)ẋ+ 2(1− x2 − y2)(−2y)ẏ

= −4
(
1− x2 − y2

)
(xẋ+ yẏ)

= −4
(
1− x2 − y2

) (
x2(1− x2 − y2) − 2xy(1+ x) + y2(1− x2 − y2) + 2xy(1+ x)

)
= −4

(
1− x2 − y2

)2 (
x2 + y2

)
6 0

So, we have that dV/dt 6 0 everywhere, and dV/dt = 0 only when x2 + y2 = 0 (which is at the fixed point
(x, y) = 0) and at x2+y2 = 1. Moreover, V(x, y) > 0 everywhere, with V(x, y) = 0 exactly when x2+y2 = 1.
Therefore, we have an asymptotically stable closed orbit at x2 + y2 = 1.

(b) Yes, it is a limit cycle. Because it’s attracting, nearby orbits spiral into it, and so it’s isolated.

2. Consider the system of ordinary differential equations

dx

dt
= x2 − y

dy

dt
= 2αx− y− β

with the parameters α,β > 0.

(a) Find and classify all bifurcations of steady states that occur in the system. (That is, identify
all saddle-node, pitchfork, transcritical, and/or Hopf bifurcations. For any pitchfork or Hopf
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bifurcations, you do NOT have to determine whether they are super- or sub-critical).

(b) Plot the stability diagram (i.e., two-parameter bifurcation diagram) for the system in the α,β-
plane. A codimension-2 bifurcation called a Taken-Bogdonov bifurcation occurs at α = 1/2, β =
1/4. Very briefly describe what happens at this point.

(a) First, we find our steady states. Clearly ẋ = 0 when y = x2. For ẏ = 0, we have

2αx− y− β = 0 → x =
2α±

√
4α2 − 4β

2
= α±

√
α2 − β.

So, in the most general case, we have two fixed points:

(x, y) =

(
α+

√
α2 − β,

(
α+

√
α2 − β

)2)
,

(
α−

√
α2 − β,

(
α−

√
α2 − β

)2)
Based on the values under the radicals, we get the following cases:

α2 < β : 0 fixed points
α2 = β : 1 fixed point : (x, y) = (α,α2)

α2 > β : 2 fixed points

So, clearly a saddle-node bifurcation occurs at α2 = β. Since there are no other situations where fixed points
are created or destroyed, we know that there won’t be any pitchfork or transcritical bifurcations, but this
still leaves the case where there may be a Hopf bifurcation.

To check for a hopf bifurcation, we need to see if at any point the real part of the eigenvalues of one of our
fixed points passes through zero, resulting in a pure imaginary eigenvalue pair.

We examine the Jacobian of our system in the general case:

J =

[
2x −1
2α −1

]
→ (2x− λ)(−1− λ) + 2α = 0

λ2 + (1− 2x)λ+ 2(α− x) = 0

This results in the following eigenvalues:

λ =
−(1− 2x)±

√
(1− 2x)2 − 8(α− x)

2

Two things must happen to get a Hopf bifurcation here: we must have 1− 2x = 0, and the object under our
radical must be negative.

Since we require 1− 2x = 0, we have x = 1/2, which would require α±
√
α2 − β = 1/2. So,

±
√
α2 − β =

1

2
− α

α2 − β =

(
1

2
− α

)2
α2 − β =

1

4
− α+ α2

β = α−
1

4
.

Now, our other requirement is that (1 − 2x)2 − 8(α − x) < 0. Note from earlier that 1 − 2x = 0, and so this
collapses to the requirement α > x. Moreover, 1 − 2x = 0 is equivalent to x = 1/2, and so this requirement
is truly α > 1/2.
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In total, we expect a Hopf bifurcation when α > 1/2 and β = α − 1/4. We need a fixed point to exist for it
to undergo such a bifurcation, though, so we also require α2 > β. We briefly check that such a point exists:

α2 > α−
1

4

α2 − α+
1

4
> 0(

α−
1

2

)2
> 0

Yes, there are indeed valid α > 1/2 such that this will happen.

(b) At the point α = 1/2, β = 1/4, two bifurcations collide: both a saddle-node bifurcation and a Hopf
bifurcation. Depending on which direction we move across this bifurcation point in, we can either move
between no fixed points and two fixed points, or two fixed points can temporarily collide into one and then
re-separate, or we could change stability.

3. Suppose you are given a string of length L. Of all possible potential arrangements of the string, which
one maximizes the area enclosed by it, A?

Assume (1) that the shape of the string is symmetric; and (2) that half of the string (of length L/2) can
be described by the function f(x), defined for a 6 x 6 b, such that

∫b
a f(x)dx = A/2.

Without loss of generality, we allow the x-axis to be the axis of symmetry for our string, and we position it
so that its leftmost point is at the origin. In this way, we have f(x) > 0 for 0 < x < b, where f(0) = f(b) = 0.

Intuitively, we expect any shape with a fixed perimeter which maximizes the area in encloses to be a circle.
So, we expect f to be a semicircle with arc length L/2, that is, to be of the form (x − r)2 + f2 = r2, where
πr = L/2. On geometric intuition alone, we expect our answer to be

f(x) =

√(
L

2π

)2
−

(
x−

L

2π

)2
.

We now prove this result using calculus of variations. Our goal is to maximize the integral

L =

∫b
0

f(x)dx =
A

2

subject to the constraint ∫b
0

√
1+ [f ′(x)]2 dx =

L

2
.
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We define
h = f+ λ

√
1+ [f ′(x)]2.

Then, the Euler-Lagrange equation gives

∂h

∂f
=
d

dx

[
∂h

∂f ′

]
1 =

d

dx

[
λf ′√
1+ f ′2

]
x+ c =

λf ′√
1+ f ′2

(for c some constant)

(x+ c)
√
1+ f ′2 = λf ′

(x+ c)2
(
1+ f ′2

)
= λ2f ′2

(x+ c)2 =
(
λ2 − (x+ c)2

)
f ′2

f ′2 =
(x+ c)2

λ2 − (x+ c)2

f ′ = ± x+ c√
λ2 − (x+ c)2

Since we expect f ′(0) > 0, we take only the positive version:

f ′ = sgn c · x+ c√
λ2 − (x+ c)2

(This isn’t exactly correct — if c = 0, then we’ll consider sgn(c) = 1, but it’s more concise for now). We
integrate f.

f(x) = sgn(c)
∫

x+ c√
λ2 − (x+ c)2

dx

= sgn(c)
∫

u√
λ2 − u2

du

= −
1

2
sgn(c)

∫
dw√
w

(
w = λ2 − u2, dw = −2udu

)
= − sgn(c)

√
w+ d

= − sgn(c)
√
λ2 − (x+ c)2 + d

Since f(0) = 0, this becomes

f(x) = − sgn(c)
√
λ2 − (x+ c)2 +

√
λ2 − c2

We’ll assume that f is smooth, since it represents a real object. Since f is symmetric, we will expect
limx→0 f ′(x) =∞, and so we expect√

λ2 − c2 = 0 → c = ±λ,

so, we collapse f to
f(x) = − sgn(c)

√
λ2 − (x+ c)2.
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Without loss of generality, we assume λ > 0. Moreover, we have that f(b) = 0, which gives

− sgn(c)
√
λ2 − (b+ c)2 = 0

λ2 = (b+ c)2 = b2 + 2bc+ λ2

b(b+ 2c) = 0

c = −
1

2
b.

Since b > 0, we therefore have c < 0, and so

c = −λ and b = 2λ.

Thus,
f(x) =

√
λ2 − (x− λ)2.

Finally, we plug f into our integral constraint to solve for λ.

L

2
=

∫b
0

√
1+ [f ′(x)]2 dx

=

∫2λ
0

√
1+

(x− λ)2

λ2 − (x− λ)2
dx

=

∫2λ
0

√
λ2

λ2 − (x− λ)2
dx

= λ

∫2λ
0

dx√
λ2 − (x− λ)2

= λ

∫λ
−λ

du√
λ2 − u2

(u = x− λ)

= λ

∫π/2
−π/2

λ cosw√
λ2 − λ2 sin2w

dw (u = λ sinw→ w = sin−1(u/λ))

= λ

∫π/2
−π/2

λ cosw√
λ2 cos2w

dw

= λ

∫π/2
−π/2

dw

= λπ

So, we end up with λ = L/2π. Our final function is thus

f(x) =

√(
L

2π

)2
−

(
x−

L

2π

)2
.

4. A uniform, isotropic, linear-elastic beam of length L, subject to small transverse displacements has
action L,

L =

∫L
0

(
−a2

1

2
u2x +

1

2
u2t

)
dx,

where u is the local displacement at position x along the beam, and a is a constant (t is time, and the
equation is non-dimensionalized).

(a) Derive a partial differential equation for the function, u(x, t), that minimizes the action L.
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(b) Suppose that the beam is fixed at one end (u(0, t) = 0), and free at the other (ux(L, t) = 0). Solve
the PDE you derived in part (a) for arbitrary initial displacement (u(x, 0) = f(x)) and zero initial
velocity (ut(x, 0) = 0).

(c) Find the solution for the case where the beam is struck at the free end (ut(x, 0) = b · δ(x − L),
where b is an arbitrary positive constant, and δ(x) is the Dirac delta function).

Note, it may be useful to recall the property∫b
a

f(x)δ(x− c)dx = f(c) if a < c < b.

(a) We use the Euler-Lagrange equation:

∂f

∂u
−
d

dx

[
∂f

∂ux

]
−
d

dt

[
∂f

∂ut

]
= 0

−
d

dx

[
−a2ux

]
−
d

dt

[
ut
]
= 0

a2uxx − utt = 0.

(b) We assume u(x, t) has the form u(x, t) = X(x)T(t). Then,

a2X ′′(x)T(t) = X(x)T ′′(t)

a2
X ′′

X
=
T ′′

T
= λ,

where λ is some constant. Our boundary conditions become X(0) = 0, X ′(L) = 0, T ′(0) = 0, and X(x)T(0) =
f(x). First, we show λ 6 0 :

a2X ′′ = λX

a2X ′′X = λX2

a2X ′X

∣∣∣∣L
0

− a2
∫
(X ′)

2
dx = λ

∫
X2 dx

The boundary terms vanish, and so we get

−a2
∫
(X ′)

2
dx = λ

∫
X2 dx.

Since both integrals are nonnegative, we must have λ 6 0. So, we label λ = −µ2. Now, we go back to solve
for X(x).

a2X ′′ = −µ2X

X(x) = A sin
(µ
a
x
)
+ B cos

(µ
a
x
)

The boundary condition X(0) = 0 gives B = 0, and so

X(x) = A sin
(µ
a
x
)

→ X ′(x) = A · µ
a
cos
(µ
a
x
)
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The boundary condition X ′(L) = 0 gives us the following:

A · µ
a
cos
(µ
a
L
)
= 0

µL

a
=
π

2
+ kπ

µk =
aπ

L

(
k+

1

2

)
, k ∈ N

So,
Xk(x) = sin

(µk
a
x
)
= sin

(
π

L

(
k+

1

2

)
x

)
, k ∈ N.

Next, we solve for T .

T ′′ = −µ2T → T(t) = A sin(µt) + B cos(µt)
T ′(t) = A cos(µt) − B sin(µt)

The initial condition T ′(0) = 0 gives A = 0, and so

T = B cos(µt).

So, u(x, t) has the form

u(x, t) =
∑
k∈N

CkXk(x)Tk(x)

=
∑
k∈N

Ck sin
(µk
a
x
)
cos(µkt),

where µk is defined as above. To find Ck, we utilize our last boundary condition: u(x, 0) = f(x) :∑
k∈N

Ck sin
(µk
a
x
)
= f(x)

Ck are given by

Ck =
〈Xk, f(x)〉
〈Xk, Xk〉

.

First, we compute 〈Xk, Xk〉 :

〈Xk, Xk〉 =
∫L
0

sin2
(µk
a
x
)
dx

=

∫L
0

sin2
(
π

L

(
k+

1

2

)
x

)
dx

=
L

π

∫π
0

sin2
((
k+

1

2

)
θ

)
dθ (θ = πx/L)

=
L

π
· π
2

(sin2 fills out half the interval)

=
L

2

So, we finally end with
u(x, t) =

∑
k∈N

Ck sin
(µk
a
x
)
cos(µkt)

where
Ck =

2

L
〈Xk, f(x)〉 =

2

L

∫L
0

sin
(µk
a
x
)
f(x)dx and µk =

aπ

L

(
k+

1

2

)
.
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(c) Most of the results from part (b) still hold. However, instead of the initial condition T ′(0) = 0, we now have
the initial condition X(x)T ′(0) = b · δ(x− L). We began with T in the general form

T(t) = A sin(µt) + B cos(µt)
T ′(t) = A cos(µt) − B sin(µt)

Since T ′(0) = A, we have
u(x, 0) =

∑
k∈N

Xk(x) ·Ak = b · δ(x− L),

which means

Ak =
〈Xk, b · δ(x− L)〉
〈Xk, Xk〉

=
2

L
〈Xk, b · δ(x− L)〉

=
2b

L

∫L
0

sin
(µk
a
x
)
δ(x− L)dx

=
b

L
sin
(
µkL

a

)
=
b

L
sin
(π
2
+ kπ

)
=
b

L
(−1)k .

So,
Tk(t) =

b

L
(−1)k sin(µkt) + Bk cos(µkt).

Since the first term in Tk vanishes for T(0), the Bk remain the same as the Ck found in part (b), and so the
complete solution is

u(x, t) =
∑
k∈N

sin
(µk
a
x
)(b

L
(−1)k sin(µkt) + Ck cos(µkt)

)
,

where
Ck =

2

L
〈Xk, f(x)〉 =

2

L

∫L
0

sin
(µk
a
x
)
f(x)dx and µk =

aπ

L

(
k+

1

2

)
.

5. Use the WKB method to find an approximate solution to the following problem:
εy ′′ + 2y ′ + 2y = 0

y(0) = 0

y(1) = 1

Hint: Assume y(x) = g(x)f(x) for some function g(x) (that you must determine) to put the equation
into the standard WKB form, namely f ′′(x) − q(x)f(x) = 0.

For the WKB method, we assume y has the following form, for some α > 0 :

y ∼ eθ(x)/εα (y0 + εαy1) .

Then, the first two derivatives of this approximation are given by

y ′ ∼ eθ/εα
(
ε−αθxy0 + θxy1 + y

′
0 + · · ·

)
y ′′ ∼ eθ/εα

[
ε−2αθ2xy0 + ε

−α
(
θ2xy1 + 2θxy

′
0 + θxxy0

)
+ · · ·

]
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Plugging in these approximations to our equation and cancelling out the common eθ/εα term, we get

ε−2α+1θ2xy0 + ε
−α+1

(
θ2xy1 + 2θxy

′
0 + θxxy0

)
+ 2

(
ε−αθxy0 + θxy1 + y

′
0

)
+ 2 (y0 + ε

αy1) = 0

ε−2α+1θ2xy0︸ ︷︷ ︸
1

+ε−α+1
(
θ2xy1 + 2θxy

′
0 + θxxy0

)
+ ε−α2θxy0︸ ︷︷ ︸

2

+ 2 (θxy1 + y
′
0 + y0)︸ ︷︷ ︸

3

+ εα2y1︸ ︷︷ ︸
4

= 0

Now, we match for α. Setting 1 ∼ 2 gives α = 1. Then, 1 and 2 are O (1/ε), while 3 is O (1) and 4 is
O (ε). So, our first guess worked out, and there’s no need to check the others for now unless something goes
wrong. We delve into the leading-order O (1/ε) equation:

θ2xy0 + 2θxy0 = 0 → θxy0 (θx + 2) = 0

This gives us 3 options:

(1) : θx = 0

(2) : θx = −2

(3) : y0 = 0

Since (3) doesn’t tell us anything about θ, we ignore it. Next, we examine our O (1) equation:

θ2xy1 + 2θxy
′
0 + θxxy0 + 2 (θxy1 + y

′
0 + y0) = 0

θ2xy1 + 2θxy1︸ ︷︷ ︸
=0

+2θxy
′
0 + θxxy0 + 2y

′
0 + 2y0 = 0

2 (θx + 1)y
′
0 + (θxx + 2)y0 = 0

For case (1) where θx = 0 (and so θ(x) = 0), this becomes

2y ′0 + 2y0 = 0 → y0 = k1e
−x → y ∼ k1e−x

For case (2) where θx = −2 (and so θ(x) = −2x), this becomes

−2y ′0 + 2y0 = 0 → y0 = k2e
x → y ∼ k2e−2x/εex = k2 exp

[
x

(
1−

2

ε

)]
.

So, our final solution is the linear combination of these two solutions:

y ∼ k1 exp(−x) + k2 exp
[
x

(
1−

2

ε

)]
.

Plugging in the initial condition y(0) = 0, we get

0 = k1 + k2

⇓

y ∼ k1
[
exp(−x) − exp

[
x

(
1−

2

ε

)]]
Plugging in the initial condition y(1) = 1, we get

1 = k1

[
exp(−1) − exp

(
1−

2

ε

)]
k1 =

(
e−1 − e1−2/ε

)−1
So, our final solution is

y ∼
(
e−1 − e1−2/ε

)−1 [
exp(−x) − exp

[
x

(
1−

2

ε

)]]
.
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6. Assuming λ� 1, derive an approximation to the integral

I(λ) =

∫2
−1

(
1+ x2

)
e−λx

6

dx

Hint: You may write your approximation in terms of the Gamma function

Γ(z) =

∫∞
0

xz−1e−x dx.

We use Laplace’s approximation. Here, g(x) = x6 and f(x) = 1+ x2. Since g(x) attains a minimum at x = 0,
we expand around that point.

f(x) ∼ f0(x− 0)α = 1

g(x) ∼ g0 + g1(x− 0)2m = x6

So, our integral can be approximated by∫2
−1

(
1+ x2

)
e−λx

6

dx ∼
∫∞
−∞ 1 · e−λx

6

dx

= 2

∫∞
0

e−λx
6

dx

=
2

6λ

∫∞
0

x−5e−u du (u = λx6, du = 6λx5 dx)

=
1

3λ

∫∞
0

(u
λ

)−5/6
e−u du

=
1

3
λ−1/6

∫∞
0

u1/6−1e−u du

=
1

3
λ−1/6 · Γ

(
1

6

)
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1. Consider the following system:

Step 1: Take a sheet of paper and hold it in a "U" shape.
Step 2: Place a pen or pencil near the bottom of the "U", but slightly off to one side.
Step 3: Let go, and watch the pen or pencil move back and forth.

Here’s a sketch of the set-up.

When you do this experiment, the horizontal position of the pen (x in the sketch on the right) is a
function of time t, and obeys the following equation (assuming conservation of energy)

ẍ =
−f ′(x)

a(1+ f ′(x))
−

f ′′(x)

2(1+ f ′(x))
(ẋ)2 ,

where f(x) is a function that gives the height of the paper (inm) as a function of x (you may assume
it and all of its derivatives are continuous), and a is a constant with units of s2/m. Note that the dot
indicates a time derivative and prime indicates a derivative with respect to x, which is measured in
m.

(a) Find all fixed points and determine their stability (your answer should depend on a, f(x), and/or
its derivatives). Note, for this question, use the Lyapunov definition of stability, where a fixed
point is stable if trajectories that start sufficiently close (but not exactly at) the fixed point remain
within some small neighborhood of the fixed point. You may assume that there is no point at
which f ′(x) = f ′′(x) = 0.

(b) You might expect that the pen will oscillate about a stable fixed point. Find the period of this
oscillation (your answer should depend on a, f(x) and/or its derivatives). Your answer should
include units.
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(a) We label ẋ = y and convert this to a system of two equations:{
ẋ = y

ẏ = −f′(x)
a(1+f′(x)) −

f′′(x)
2(1+f′(x))y

2

So, we require ẋ = 0, which then yields f ′(x) = 0 from the ẏ equation. So, our only fixed points are
(x, ẋ) = (x̄, 0), where x̄ is such that f ′(x̄) = 0. Now, we compute the Jacobian of this system:

J =

[
0 1

af′′(x)(1+f′(x))+af′(x)f′′(x)

[a(1+f′(x))]2
−2f′′(x)
2(1+f′(x))y

]

J
∣∣
x̄,0

=

[
0 1

f′′(x̄)
a

0

]
The characteristic equation of this matrix is

λ2 +
f ′′(x̄)

a
= 0 → λ = ±

√
−
f ′′(x̄)

a

If f ′′(x̄) and a have the same sign, then this is a linear center, and since our system is conservative, this
would mean that the fixed point is stable. However, if f ′′(x̄) and a have opposite signs, then this point is a
saddle and thus unstable.

If we can assume our problem takes the form of the plain-text description, then we have that f ′′(x̄) > 0
everywhere. Moreover, if we assume that a > 0, since a is measured in squared seconds per meter, all of
which units should always be nonnegative, then we can say that this fixed point is always a linear center
and thus stable.

2. Suppose you are studying the interaction of two proteins. The concentration of the first protein is
p(t) and the concentration of the second protein is w(t). They interact via the following equations:

ṗ = Ap
p2

K2p + p
2
− kwp

ẇ = Aw
w

K2w +w
− kwp

In each equation, the first term models the formation of protein, and the second term models the
breakdown of the protein. Concentration is measured in units of number per liter and time is
measured in seconds. The constants Kp and Kw then have units of concentration; the constants Ap
and Aw have units of concentration per second; and k has units of inverse concentration per second.

(a) Suppose that you know Kp/Kw = ε (where ε is a small number),Aw/(K2pk) = α/ε (where α is of
order 1) andAp/(K2pk) = β (where β is of order 1). Non-dimensionalize the equations and write
them in terms of the appropriate non-dimensional variables and the nondimensional constants
ε, α and β.

(b) Simplify the equations by expanding in ε and neglecting all terms of order ε.

(c) Identify all fixed points and determine their stability. Discuss any bifurcations that may occur.

(d) Sketch a phase portrait of the system. On your plot, be sure to (1) identify and classify all fixed
points, (2) draw all nullclines, (3) indicate the qualitative flow direction, and (4) sketch a few
sample trajectories.

(a) We define some characteristic concentration scale cc and a characteristic time scale tc. Then, our equations
become:
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cc

tc
˙̃p = Ap

c2cp̃
2

K2p + c
2
cp̃
2
− kc2cw̃p̃

cc

tc
˙̃w = Aw

ccw̃

Kw + ccw̃
− kc2cw̃p̃

˙̃p =
Aptc

cc
· p̃2

(Kp/cc)2 + p̃2
− ktcccw̃p̃ ˙̃w =

Awtc

cc
· w̃

Kw/cc + w̃
− ktcccw̃p̃

We set cc/tc = K2pk, and our equations become

˙̃p = β · p̃2

(Kp/cc)2 + p̃2
−
c2c
K2p
· w̃p̃ ˙̃w =

α

ε
· w̃

Kw/cc + w̃
−
c2c
K2p
· w̃p̃

Now, we set cc = Kp. Our equations become

˙̃p = β · p̃2

1+ p̃2
− w̃p̃ ˙̃w =

α

ε
· w̃

1/ε+ w̃
− w̃p̃

So, dropping our tildes and rearranging our epsilons, we have the nondimensional equations

ṗ =
βp2

1+ p2
−wp

ẇ =
αw

1+ εw
−wp.

(b) Our simplified equations are

ṗ = p

(
βp

1+ p2
−w

)
ẇ = w (α− p) .

(c) Our first fixed point is (p,w) = (0, 0). Our other is (p,w) = (α,βα/(1 + α2)). To find their stability, we
compute the Jacobian:

J =

[
−w+ 2βp

(1+p2)2
−p

−w α− p

]
J
∣∣
0,0

=

[
0 0
0 α

]
So, for (0, 0), our eigenvalues are λ = 0, α. Since α > 0, we classify this fixed point as unstable everywhere
except α = 0, in which case we cannot determine the stability. Now, we check our other fixed point:

J
∣∣
α,w(α)

=

[
αβ(1−α)
(1+α2)2

−α

− αβ
1+α2

0

]

We compute the eigenvalues: (
αβ(1− α)

(1+ α2)2
− λ

)
(−λ) −

α2β

1+ α2
= 0

λ2 − λ
αβ(1− α)

(1+ α2)2
−

α2β

1+ α2
= 0
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By the quadratic formula, we get

λ =
αβ(1− α)

2(1+ α2)2
± 1
2

√(
αβ(1− α)

(1+ α2)2

)2
+ 4

α2β

1+ α2

=
αβ(1− α)

2(1+ α2)2
± 1
2

√
α2β2(1− α)2 + 4α2β(1+ α)3

(1+ α2)4

=
αβ(1− α)

2(1+ α2)2
± α

2(1+ α2)2

√
β2(1− α)2 + 4β(1+ α)3

=
α

2(1+ α2)2

(
β(1− α)±

√
β2(1− α)2 + 4β(1+ α)3

)
To illuminate what’s going on, we’ll label β(1− α) = γ. Then, our eigenvalues are

λ =
α

2(1+ α2)2

(
γ±

√
γ2 + 4β(1+ α)3

)
Since α,β > 0, if we look at these values in terms of positive and negative values (+), (−), we have

λ = α(+)

(
γ±

√
γ2 + β(+)

)
If α or β = 0, then we won’t be able to tell anything about these eigenvalues, but otherwise, we have that
the object under our radical is always real and greater than γ, and so one eigenvalue will always be positive
and the other will be negative. Therefore, this point is a saddle, so it is unstable.

The only possible point where a bifurcation may occur is when α = 0 or β = 0. When α = 0, our two
fixed points merge into one, but since α is always nonnegative, it doesn’t truly make sense to consider this
as a bifurcation so much as an edge case. If we did want to consider mathematically valid but physically
invalid values of α,β, then this would probably correspond with a transcritical bifurcation, since both of
our fixed points would pass through each other but still exist. Similarly, if we were to look at what happens
when β passes through 0 and becomes negative, then the eigenvalues associated with the fixed point not at
the origin would change shape and/or stability. There could be a bifurcation in here, like perhaps a Hopf
bifurcation.

(d) We find the p,w nullclines first.

ṗ = 0 gives the following cases: we can have p = 0, in which case ẇ = αw > 0, or we can have

w =
βp

1+ p2
→ ẇ =


(+) p < α

0 p = α

(−) p > α

If ẇ = 0, then we can have w = 0, in which case ṗ = βp2/(1+ p2), or we can have

p = α → ṗ = α

(
αβ

1+ α2
−w

)
=


(+) w < αβ

1+α2

0 w = αβ
1+α2

(−) w > αβ
1+α2

So, we get the following phase plane:

56



Spring 2017 Mimmack

3. Let L be the differential operator

Lu = (1+ x2)u ′′ − 2xu ′ 0 < x < 1

with boundary conditions Bu = 0 given by u ′(0) = 0, u ′(1) = 0.

(a) Find the adjoint L∗ of L in L2(0, 1) and the adjoint boundary conditions B∗u = 0.

(b) What are the solutions of the homogeneous boundary value problem Lu = 0, Bu = 0? What is
the dimension of the null space?

(c) What are the solutions of the homogeneous adjoint boundary value problem L∗u = 0, B∗u = 0?
What is the dimension of the null space?

(a) We want to find L∗ such that 〈Lu,w〉 = 〈u, L∗w〉.

〈Lu,w〉 =
∫1
0

[
(1+ x2)u ′′ − 2xu ′

]
wdx =

∫1
0

(1+ x2)u ′′wdx︸ ︷︷ ︸
1

−

∫1
0

2xu ′wdx︸ ︷︷ ︸
2

First, we examine 1 :

1 =

∫1
0

(1+ x2)u ′′wdx

= (1+ x2)wu ′
∣∣1
0
−

∫1
0

u ′
[
2xw+ (1+ x2)w ′

]
dx (IBP)

= −

∫1
0

u ′
[
2xw+ (1+ x2)w ′

]
dx (Boundary Conditions)

= −u(2xw+ (1+ x2)w ′)

∣∣∣∣1
0

+

∫1
0

u
[
2w+ 4xw ′ + (1+ x2)w ′′

]
dx (IBP)

= −2u(1) (w(1) +w ′(1)) + u(0)w ′(0) +

∫1
0

u
[
2w+ 4xw ′ + (1+ x2)w ′′

]
dx

Next, we examine 2 :

2 =

∫1
0

2xu ′wdx

= 2w(1)u(1) −

∫1
0

2(w+ xw ′)udx (IBP)
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Putting these together, we get

〈Lu,w〉 = 1 − 2

= −2u(1)
[
2w(1) +w ′(1)

]
+ u(0)w ′(0) +

∫1
0

u
[
4w+ 6xw ′ + (1+ x2)w ′′

]
dx

So, our adjoint operator is given by

L∗u = 4u+ 6xu ′ + (1+ x2)u ′′

with boundary conditions 2u(1) + u ′(1) = 0 and u ′(0) = 0.

(b) Setting Lu = 0, we get

(1+ x2)u ′′ − 2xu ′ = 0

(1+ x2)u ′′ = 2xu ′

u ′′

u ′
=

2x

1+ x2

lnu ′ = ln(1+ x2) + C
u ′ = C(1+ x2)

u = C

(
x+

1

3
x3
)
+D

The boundary condition u ′(0) = 0 gives C = 0, and u ′(1) = 0 gives the same. So, we get u = D ∈ R is the
solution. The nullspace has dimension 1, since we have only one degree of freedom.

(c) Setting L∗u = 0, we get

(1+ x2)u ′′ + 6xu ′ + 4u = 0[
(1+ x2)u ′′ + 2xu ′

]
+
[
4xu ′ + 4u

]
= 0

d

dx

[
(1+ x2)u ′

]
+
d

dx

[
4ux

]
= 0

d

dx

[
(1+ x2)u ′ + 4ux

]
= 0

(1+ x2)u ′ + 4ux = C

u ′ +
4x

1+ x2
u =

C

1+ x2

Now, we use an integrating factor:

µ(x) =

∫
4x

1+ x2
dx = 2 ln

∣∣1+ x2∣∣ → eµ(x) = (1+ x)2

This yields

u(x) =
1

(1+ x2)2

∫
(1+ x2)2 · C

1+ x2
dx

=
1

(1+ x2)2

∫
C(1+ x2)dx

=
1

(1+ x2)2

[
C

(
x+

1

3
x3
)
+D

]
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We plug in the boundary condition u ′(0) = 0 :

u ′(x) =
C(1+ x2)(1+ x2)2 − (C(x+ x3/3) +D)4x(1+ x2)

(1+ x2)4

u ′(0) = C = 0

So, we have
u(x) =

D

(1+ x2)2
.

Plugging in the boundary condition 2u(1) + u ′(1) = 0 yields

2D− 4D = 0 → D = 0.

So, the only solution is the trivial solution. So the nullspace has dimension 0.

4. (a) Let Ω = {(x, y) ∈ R2 : −a < x < a, 0 < y < b} be a rectangle. Use separation of variables to
solve the boundary value problem

uxx + uyy = 0, (x, y) ∈ Ω

u(x, 0) = 0, u(x, b) = e−x
2

,

ux(−a, y) = 0, ux(a, y) = 0.

(b) What is a physical interpretation of this problem? What is the approximate limiting behavior of
the solution as b→ 0?

(a) We let u(x, y) = X(x)Y(y). Then, our PDE has the form

X ′′Y + XY ′′ = 0 → X ′′

X
= −

Y ′′

Y
= λ.

We show that λ is nonnegative.

X ′′ = λX

X ′′X = λX2

X ′X
∣∣a
−a

−

∫
(X ′)2 = λ

∫
X2 (IBP)

−

∫
(X ′)2 = λ

∫
X2 (Boundary Condition)

So, λ = −µ2. We now solve our X equation:

X ′′ = −µ2X → X = A sin(µx) + B cos(µx)
X ′ = µ [A cos(µx) − B sin(µx)]

Plugging in our boundary condititions yields

X ′(a) = µ [A cos(µa) − B sin(µa)] = 0
X ′(−a) = µ [A cos(µa) + B sin(µa)] = 0

So, we have
A cos(µa) = B sin(µa) = 0.
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This gives us two possible conditions:

(1) B = 0 and µa = (k+ 1/2)π

(2) A = 0 and µa = kπ

That is, for all k ∈ N,

(1) Xk(x) = sin(µkx), µk =
π

a

(
k+

1

2

)
(2) Xk(x) = cos(µ̃kx), µ̃k =

kπ

a
.

Now we solve our Y equation:

−
Y ′

Y
= −µ2 → Y ′′ = µ2Y → Y(y) = Ceµy +De−µy

The boundary condition Y(0) = 0 gives D = −C, and so we get

Yk(y) = Ck
(
eµky − e−µky

)
.

Now, we plug in the boundary condition at y = b, combining our two cases for the Xk:

u(x, b) = e−x
2

=
∑
k∈N

[
Ck
(
eµkb − e−µkb

)
sin(µkx) + C̃k

(
eµ̃kb − e−µ̃kb

)
cos(µ̃kx)

]
Note that since e−x2 is an even function, the sines should not play into the solution at all. So, we actually
collapse to case (2), dropping the tildes now since we are only dealing with one value of µk:

e−x
2

=
∑
k∈N

Ck
(
eµkb − e−µkb

)
cos(µkx)

Our coefficients are then given by

Ck =

〈
cos(µkx), e−x

2 (
eµkb − e−µkb

)−1〉
〈cos(µkx), cos(µkx)〉

First, we compute the norm of our basis functions:

〈cos(µkx), cos(µkx)〉 =
∫a
−a

cos2
(
kπ

a
x

)
dx

=
a

π

∫π
−π

cos2(kθ)dθ (u-sub: θ = πx/a)

=
a

π
· 1
2
(2π)

= a

So, we now have

Ck =
1

a

〈
cos(µkx), e−x

2 (
eµkb − e−µkb

)−1〉
=
1

a

(
eµkb − e−µkb

)−1 ∫a
−a

e−x
2 cos(µkx)dx, where µk =

kπ

a

So, our final solution (with the Ck and µk as given above) is

u(x, y) =
∑
k∈N

Ck
(
eµky − e−µky

)
cos(µkx).

(b) This is Laplace’s equation on a rectangle, where we are fixed along the y-boundaries and are flat in the
x-direction across the x-boundaries. As b→ 0, our constants Ck approach 0, so the solution approaches 0.
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6. The dimensionless equation of motion of a frictionless pendulum is

d2θ

dt2
+ sin θ = 0.

In the limit of small amplitude (e.g. denote the amplitude of the θ as ε), the period is 2π to leading
order. Compute the next term in the expansion of the period for small amplitude.

(With help fromWai Ho Chak and Lifeng Ren)

We begin by multiplying each side of our equation by θ̇ and integrating with respect to t:

θ̈ = − sin θ
θ̈θ̇ = − sin θ · θ̇

1

2

(
θ̇
)2

= cos θ+ C

θ̇2 = 2 (cos θ+ C)

θ̇ =
√
2 ·
√
cos θ+ C

Since the amplitude of θ(t) is ε, without loss of generality, we take θ̇(0) = 0 and θ(0) = ε. Together, these
give

θ̇(0) = 0 → cos(θ(0)) + C = 0 → C = − cos ε.
So, we now have

θ̇ =
√
2 ·
√
cos θ− cos ε.

Since we want to find the amount of time it takes to go from one state where θ̇ = 0 back to that original
state, what we’re trying to find is how much time it takes for θ to pass from ε to 0 to −ε to 0 and back to ε.
Due to the symmetry of the problem, this is equivalent to 4 times the time θ takes to pass from 0 to ε, and so

T(ε) = 4

∫ε
0

1

θ̇
dθ = 4

∫ε
0

√
2

2
· dθ√

cos θ− cos ε
= 2
√
2

∫ε
0

dθ√
cos θ− cos ε

.

We know that, for our above expression, 0 < θ < εwhere ε is small. So,

T(ε) = 2
√
2

∫ε
0

dθ√
cos θ− cos ε

= 2
√
2

∫ε
0

[(
ε2 − θ2

2

)
−

(
ε4 − θ4

4!

)
+ O

(
ε6
)]−1/2

dθ

= 2
√
2

∫ε
0

(
ε2 − θ2

2

)−1/2(
1−

(
ε2 + θ2

12

)
+ O

(
ε4
))−1/2

dθ

= 2
√
2

∫ε
0

√
2

ε2 − θ2

[
1+

ε2 + θ2

24
+ O

(
ε4
)]
dθ

= 4

∫ε
0

dθ√
ε2 − θ2︸ ︷︷ ︸
1

+
1

6

∫ε
0

ε2 + θ2√
ε2 − θ2

dθ︸ ︷︷ ︸
2

+O
(
ε4
)

Examining (1) and (2), we have

(1) :

∫ε
0

dθ√
ε2 − θ2

=

∫π/2
0

dφ =
π

2
(using θ = ε sinφ, dθ = ε cosφdφ)

(2) :

∫a
0

ε2 + θ2√
ε2 − θ2

dθ =

∫π/2
0

ε2(1+ sin2φ)dφ = ε2
∫π/2
0

[
1+

1− cos(2φ)
2

]
dφ =

πε2

2
+
πε2

4
=
3πε2

4
.
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So, all together,

T(ε) = 4
(π
2

)
+
1

6

(
3πε2

4

)
+ O

(
ε4
)
= 2π+

π

8
ε2 + O

(
ε4
)

as ε→ 0.
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1. The SIR model is a simple and sometimes accurate way to describe the spread of a disease in a
population. One variant of the model is given by the following three equations:

dS

dt
= a(I+ R+ S) − aS− bSI

dI

dt
= bSI− aI− cI

dR

dt
= cI− aR

where S is the number of susceptible individuals, I the number of infected individuals and R the
number of recovered individuals in the population and t is time.

The parameters are defined as follows:

a is the birth rate and also the death rate. Since these rates are equal, the population maintains a
constant size, R+ I+ S = N, where N is a constant.

b is the transmission likelihood. When a susceptible and infected individual meet, the susceptible
becomes infected with some probability. The parameter b defines the rate that susceptible and
infected individuals meet and the infection is transmitted.

c is the recovery rate. An infected individual recovers at this rate, and then is immune to the disease.

(a) Using a and N to define your time and population scales, respectively, non-dimensionalize the
three differential equations.

Given the appropriate non-dimensionalization, and using the constraint that the population
maintains a constant size, the equations become

dx

dT
= 1− x− αxy

dy

dT
= αxy− (1+ β)y

where x is the probability that an individual is susceptible, y is the probability that an individual
is infected, and the probability that an individual is resistant (z) can be determined from the
constraint x+ y+ z = 1.

(b) Find all fixed points (x∗, y∗) and determine their stability for all combinations of α,β > 0.

(c) Suppose that β = 1. A bifurcation occurs as α changes. Classify this bifurcation, and sketch a
phase portrait before and after the bifurcation.
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(a) We use N as our population scale and 1/a as our time scale. Then, our first equation becomes

aN
˙̃
S = aN− aNS̃− bN2S̃Ĩ

˙̃
S = 1− S̃−

bN

a
S̃Ĩ

Our second equation becomes

aN
˙̃
I = bN2S̃Ĩ− aNĨ− cNĨ

˙̃
I =

bN

a
S̃Ĩ−

(
1+

c

a

)
Ĩ

Our third equation becomes

aN
˙̃
R = cNĨ− aNR̃

˙̃
R =

c

a
Ĩ− R̃

Setting α = bN/a and β = c/a, we get the given set of nondimensional equations.

(b) We first solve for when ẏ = 0 :

0 = y (αx− (1+ β))

This yields y = 0 and x = (1+ β)/α. Plugging these into ẋ = 0, we get

y = 0 → 0 = 1− x → x = 1

x =
1+ β

α
→ 0 = 1−

1+ β

α
(1+ αy) → y =

α− (1+ β)

α(1+ β)

So, our two fixed points are given by

(x∗, y∗) = (1, 0),

(
1+ β

α
,
α− (1+ β)

α(1+ β)

)
For simplicity for the following computations, we label 1+ β = γ. Then, our fixed points are equivalently

(x∗, y∗) = (1, 0),

(
γ

α
,
α− γ

αγ

)
.

The Jacobian for this system is

J =

[
−(1+ αy) −αx

αy αx− γ

]
.

First, we compute the stability of (1, 0) :

J
∣∣
1,0

=

[
−1 −α
0 α− γ

]
→ 0 = (−1− λ)(α− γ− λ)

0 = λ2 + λ(1− α+ γ) − α+ γ

λ = −
1

2
(1− α+ γ)± 1

2

√
(1− α+ γ)2 − 4(−α+ γ)

We first check if this value is ever complex by examining the object under the radical:

(1− α+ γ)2 − 4(−α+ γ) = (2− α+ β)2 − 4(1− α+ β)

= 4− 4α+ 4β− 2αβ+ α2 + β2 − 4+ 4α− 4β

= α2 − 2αβ+ β2

= (α− β)2
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Plugging this back into our expression for our eigenvalues, we have

λ = −
1

2
(2− α+ β)± 1

2
(α− β) = −1, α− (1+ β)

So, we get the following cases:

(1, 0) is a
{
saddle : α > 1+ β

stable node : α < 1+ β

Now, we check our other fixed point.

J

∣∣∣∣
(γα ,

α−γ
αγ )

=

[
−α
γ

−γ
α
γ
− 1 0

]
→ 0 = λ2 +

α

γ
λ+ α− γ

λ =
1

2

−α
γ
±

√(
α

γ

)2
− 4(α− γ)


So, we get the following cases:

(
β+ 1

α
,
α− (β+ 1)

α(β+ 1)

)
is a


saddle : α < β+ 1

stable node : α > β+ 1 and
(
α
β+1

)2
> 4(α− β− 1)

stable spiral : α > β+ 1 and
(
α
β+1

)2
< 4(α− β− 1)

(c) When β = 1, our fixed points and their stabilities become:

(1, 0) is a
{
saddle : α > 2

stable node : α < 2

(
2

α
,
α− 2

2α

)
is a


saddle : α < 2

stable node : α > 2 and α2 > 16(α− 2)

stable spiral : α > 2 and α2 < 16(α− 2)

We see that when α passes through 2, our two fixed points collide and swap stability. So, we have a
transcritical bifurcation at α = 2.

To draw the phase plane, we first note our nullclines. The x-nullcline is given by x = 1/(1 + αy). Our
y-nullclines are given by y = 0 and x = 2/α. These are the nullclines for α < 2 and α > 2 :

This yields the following phase planes for α < 2 and α > 2, respectively:

65



Fall 2016 Mimmack

2. Consider the following mechanical system.

A block, of massm, sits on a conveyer belt moving at velocity v0. The mass is attached to a wall with
a linear spring of stiffness k. The position of the mass, x, as a function of time, t, obeys the following
differential equation:

m
d2x

dt2
= kx− f(ṡ),

where f is the frictional force that the conveyer belt applies to the block and ṡ is the velocity of the
block relative to the belt, ṡ = dx/dt− v0. This equation can be non-dimensionalized to

d2X

dT2
= −X− F

(
dX

dT
− V

)
.

Suppose that V = 1. Also, suppose that the friction force as a function of relative speed has the
following form:

F(x) =

{
1+ ax : x > 0

−1+ ax : x < 0

(a) Perhaps the simplest model of friction is Coulomb friction, which is the above eqn with a = 0.
Show that linearization predicts that the unique fixed point, X = −F(−1) = 1, dX/dT = 0, is a
center and explain why this is, in fact, a true center.

(b) Show that, as a varies, the fixed point goes from a stable to an unstable spiral (assuming |a| < 2).

(c) It turns out that when the fixed point becomes unstable, a limit cycle appears. This is a Hopf
bifurcation. Is it a subcritical, supercritical or degenerate Hopf? Briefly (in a sentence or two)
explain.
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(a) We expand this into a system of two equations:{
Ẋ = Y

Ẏ = −X− F(Y − 1)

Linearizing this system to get the Jacobian, it becomes

J =

[
0 1
−1 −F ′(Y − 1)

]
At (X, Y) = (1, 0), F ′(−1) = 0, and so this becomes

J
∣∣
1,0

=

[
0 1
−1 0

]
→ λ2 + 1 = 0 → λ = ±i

So, the fixed point is a linear center. To see why this fixed point is a true center, we examine the equation
for Ẏ more closely. Since a = 0, this can be re-written as

Ẏ =

{
−X− 1 : Y > 1

−X+ 1 : Y < 1.

So, within a decent-sized neighborhood of the fixed point (1, 0) (that is, Y < 1), this system is a linear system:{
Ẋ = Y

Ẏ = −X+ 1

So, our linear center is a true center in this region. The dynamics of the system outside of this region are
not relevant to the dynamics of the system "close enough" to the fixed point, so this is a true center.

(b) For general |a| < 2, the Jacobian is

J
∣∣
1,0

=

[
0 1
−1 a

]
→ 0 = λ2 + aλ+ 1 → λ =

1

2

(
−a±

√
a2 − 4

)
The object under the radical is always negative for |a| < 2, and so we will always have a spiral. When a
increases through 0, <(λ) moves from negative to positive, and so our fixed point changes from a stable
spiral to an unstable spiral.

(c) Since a limit cycle emerges when the spiral is unstable, this limit cycle is stable. Expect supercritical Hopf
bifurcation.

3. Define a functional J : X→ R by

J(u) =

∫π/4
0

{
1

2
(u ′)2 +

1

2
u4 + u2

}
dx

X =
{
u ∈ C2[0, π/4]

∣∣ u(0) = 0, u(π/4) = 1}
(a) What is the Euler-Lagrange equation for J?

(b) Find the function u ∈ X that minimizes J.

Hint: It turns out that u ′(0) = 1, which may be helpful in evaluating the constants of integration.
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(a) Since there is no explicit dependence on t, we use the following form of the Euler-Lagrange equation:

L− u ′
∂L

∂u ′
= C

for some constant C. This gives

1

2
(u ′)2 +

1

2
u4 + u2 − (u ′)2 = C

−
1

2
(u ′)2 +

1

2
u4 + u2 = C

(u ′)2 − u4 − 2u2 = C

(u ′)2 = C+ u4 + 2u2

We use the fact that u ′(0) = 1 to solve for C :

1 = C+ 0+ 0 → C = 1

So, returning our equation, we have

(u ′)2 = u4 + 2u2 + 1

(u ′)2 = (u2 + 1)2

u ′ = ±(u2 + 1)
u ′

u2 + 1
= ±1

arctanu = ±t+ C
u = tan(±t+ C)

Plugging in the initial condition u(0) = 0, we get

u = tan(±t).

Finally, plugging in u(π/4) = 1, we get the (+) version of the (±), and so our final solution is

u(t) = tan t.

5. In the relativistic mechanics of planetary motion around the Sun, one comes across the problem

d2u

dθ2
+ u = α

(
1+ εu2

)
,

where α > 0. Here, u = 1/r, where r is the normalized radial distance of the planet from the sun,
and θ is the angular coordinate in the orbital plane. Find a first-term approximation of the solution
u that is valid for large θ for small ε that satisfies the initial conditions

u(0) = 1

u ′(0) = 0.

We set ε = 0 and solve the equation at leading order:

u ′′ + u = α

u ′′ = −u+ α

u = A sin θ+ B cos θ+ α
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Plugging in u(0) = 1 yields 1 = B+ α, and so we now have

u = A sin θ+ (1− α) cos θ+ α.

Finally, plugging in u ′(0) = 0 yields A = 0, and so our final solution is

u = (1− α) cos θ+ α.

6. Find the leading order composite expansion for small ε for the problem

ε2y ′′ + ε
3

2
xy ′ − y = −x, for 0 < x < 1, y(0) = 1, y(1) = 2.

For the outer expansion, we set ε = 0. This yields the equation yout = x, which cannot satisfy either of our
boundary conditions. So, we will have two boundary layers.

For the boundary layer at x = 0, we set x̂ = x/εα. Then, our equation becomes

ε2−2αy ′′︸ ︷︷ ︸
1

+ ε1+α−α
3

2
x̂y ′︸ ︷︷ ︸

2

− y︸︷︷︸
3

= −εαx̂

We match 1 ∼ 3 , and so we require 2− 2α = 0, and so α = 1. Then, our leading order equation is

y ′′ − y = 0

y = Aex̂ + Be−x̂

In order to match, we take the limit as x̂→∞ :

lim
x→0

yout = 0

lim
x̂→∞yin,0 = A(∞)

So, we require A = 0 in order to match. Then, to fit our boundary condition, at x = 0, we have x̂ = 0. So we
solve y(0) = 1 :

1 = B → yin,0 = e
−x̂ = e−x/ε.

Now, we consider our other boundary layer. In this case, we set x̂ = (x − 1)/ε, and so our equation
becomes

y ′′ +
3

2
(εx̂+ 1)y ′ − y = −εx̂− 1

So, the leading-order equation is

y ′′ +
3

2
y ′ − y = −1

The solution to this equation is
y = Aex̂/2 + Be−2x̂ + 1

Since we have to be able to match as x̂ → ∞, we require B = 0. Now, plugging in our boundary condition
y(0) = 2 (having shifted x = 1→ x̂ = 0, we get A = 1. So, we have

yin,1 = e
x̂/2 + 1 = e(x−1)/2ε + 1.

The overlap here is 1, and so our total composite solution is

y ∼ yout + yin,0 + yin,1 − yoverlap
= x+ e−x/ε + e(x−1)/2ε.
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1. Consider the one-dimensional dynamical system

dx

dt
= µx− 2x2 + x3,

where µ ∈ R is a parameter and x(t) ∈ R.

(a) Determine the equilibria of the system and for what ranges of µ they exist.

(b) Determine the stability of the equilibria in (a).

(c) Sketch the bifurcation diagram for this system, using a solid line to denote a branch of stable
equilibria and a dashed line to denote a branch of unstable equilibria. Classify the bifurcations
that occur as µ increases from −∞ to∞.

(a) We set ẋ = 0 :

0 = x
(
µ− 2x+ x2

)
→ x = 0, µ− 2x+ x2 = 0 → x̃ = 0, 1±

√
1− µ.

The ± pair of equilibria only exists for µ 6 1.

(b) If we label ẋ = f(x), then to find the stability of our equilibria, we plug each into

f ′(x) = µ− 4x+ 3x2.

We begin with x̃ = 0 :

f ′(x̃) = µ =

{
unstable : µ > 0

stable : µ < 0

Next, we plug in x̃ = 1±
√
1− µ :

f ′(x̃) = (2x− x2) − 4x+ 3x2

= −2x+ 2x2

= 2x(x− 1)

Clearly x̃ = 1+
√
1− µ > 1, and so this equilibrium is always unstable. On the other hand, x̃ = 1−

√
1− µ

is negative when µ < 0 and is less than one when µ 6 1. Therefore, it is stable for 0 < µ < 1 and unstable
otherwise.

(c) We have a transcritical bifurcation at (µ, x) = (0, 0) and a saddle-node bifurcation at (µ, x) = (1, 1).
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2.

(a) Show that the second order ODE

d2x

dt2
+

(
dx

dt

)2
+ x = 0

can be put in the Hamiltonian form

dx

dt
=
∂H

∂p
,

dp

dt
= −

∂H

∂x

by defining

p = e2x
dx

dt
.

What is H(x, p)?

(b) Sketch the phase plane of the resulting Hamiltonian system.

(a) Our definition of p immediately gives ẋ = pe−2x. We now solve for ṗ :

ṗ = 2e2xẋ2 + e2xẍ

= 2e2xẋ2 + e2x(−ẋ2 − x)

= e2xẋ2 − xe2x

= e2x
(
pe−2x

)2
− xe2x

= p2e−2x − xe2x

Integrating up to find H, we have

ẋ =
∂H

∂p
→ H =

1

2
p2e−2x + f(x)

−ṗ =
∂H

∂x
→ H =

1

2
p2e−2x +

∫
xe2x dx+ g(p) =

1

2
p2e−2x +

1

2
xe2x −

1

4
e2x + g(p)

So, matching f(x) and g(p), we get

H(x, p) =
1

2
p2e−2x +

1

2
xe2x −

1

4
e2x

(b) Our system is given by {
ẋ = pe−2x

ṗ = p2e−2x − xe2x.
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The only point for which ẋ = 0 is p = 0, which then yields x = 0 for ṗ = 0. So, our only fixed point is
(x, p) = (0, 0). We examine the flow along the coordinate axes, as well: when x = 0, we get ẋ = p and
ṗ = p2, and when p = 0, we get ẋ = 0 and ṗ = −xe2x. This produces the following flow:

Which yields the following phase plane:

3. Suppose a perfectly flexible rope of length 2a with uniform density ρ hangs under gravity from two
fixed points (−b, 0) and (b, 0) in the xy-plane where b < a and the gravity points downward (i.e.,
the negative y direction). Find the shape of this rope, y = y(x), that minimizes the potential energy

V = ρg

∫b
−b

y
√
1+ y ′2 dx

Hint: The constraint is of course the arc length of the rope must be 2a.

We assume the rope is symmetric. In this way, our arc length constraint is∫b
0

√
1+ y ′2 dx = a.

We use a Lagrange multiplier, so that our goal is to minimize the integral of h, where

h = (y+ λ)
√
1+ y ′2.

The Euler-Lagrange equation is
∂h

∂y
=
d

dx

∂h

∂y ′
.

However, since h is not explicitly dependent on x, we can use the simpler form

h− y ′
∂h

∂y ′
= c,
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where c is some constant. We compute ∂h/∂y ′ :

∂h

∂y ′
=

(y+ λ)y ′√
1+ y ′2

So, our Euler-Lagrange equation becomes

(y+ λ)
√
1+ y ′2 −

(y+ λ)y ′2√
1+ y ′2

= c

(y+ λ)(1+ y ′2) − (y+ λ)y ′2 = c
√
1+ y ′2

y+ λ = c
√
1+ y ′2

(y+ λ)2 = c2(1+ y ′2)

(y+ λ)2 − c2 = c2y ′2√
(y+ λ)2 − c2 = cy ′

cy ′√
(y+ λ)2 − c2

= 1∫
c dy√

(y+ λ)2 − c2
= x+ d

We integrate the left-hand side:∫
c dy√

(y+ λ)2 − c2
=

∫
c · c sinhudu√
c2 cosh2 u− c2

(λ+ y = c coshu)

=

∫
c sinhudu√
cosh2 u− 1

=

∫
c sinhudu√

sinh2 u

=

∫
c du

= cu

= c · cosh−1

(
λ+ y

c

)
So, we now have

c · cosh−1

(
λ+ y

c

)
= x+ d

cosh−1

(
λ+ y

c

)
=
x+ d

d

λ+ y

c
= cosh

(
x+ d

c

)
y = c · cosh

(
x+ d

c

)
− λ

Since we’ve assumed symmetry, we have y ′(0) = 0, and so we get

y ′(0) = sinh
(
0+ d

c

)
= 0 → d = 0.

So, now we have
y = c · cosh

(x
c

)
− λ.
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The boundary condition y(b) = 0 gives

c · cosh
(
b

c

)
= λ,

and so we have
y = c

[
cosh

(x
c

)
− cosh

(
b

c

)]
.

Finally, we find c via our arc length constraint:

a =

∫b
0

√
1+ y ′2 dx

=

∫b
0

√
1+ sinh2(x/c)dx

=

∫b
0

cosh
(x
c

)
dx

= c sinh
(
b

c

)
So, we end with

y = c

[
cosh

(x
c

)
− cosh

(
b

c

)]
,

where c is the constant such that
c sinh

(
b

c

)
= a.

4. Let f(θ) be the 2π-periodic function such that f(θ) = eθ for−π < θ 6 π, and let
∑∞
n=−∞ cneinθ be its

Fourier series; thus

eθ =

∞∑
n=−∞ cne

inθ

for |θ| < π.

(a) Compute cn, n ∈ Z, explicitly.

(b) If we formally differentiate this equation, we obtain

eθ =

∞∑
n=−∞ cnine

inθ.

But then, cn = incn or (1− in)cn = 0, so cn = 0 for all n. This is obviously wrong; where is the
mistake?

(a) Our coefficients are given by

cn =
1

2π

∫π
−π

eθe−inθ dθ

=
1

2π

1

(1− in)
e(1−in)θ

∣∣∣∣π
−π

=
1

2π

1

(1− in)

(
eπ(−1)n − (−1)ne−π

)
=

(−1)n

2π(1− in)

(
eπ − e−π

)
.
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(b) Since f is only piecewise continuous, but not continuous, as its endpoints do not match, the derivative of its
Fourier series does not give the Fourier series of its derivative.

5. Find a one-term approximation, that is valid for long time scales, of the solution to the following
differential equation

ε
d2x

dt2
+ ε

dx

dt
+ x = cos t

for t > 0, with initial conditions x(0) = 0 and dx/dt
∣∣
t=0

= 0.

Figure 1: This is a numerical solution of the equation with ε = 0.01 (gray), plotted with my solution
for the one term approximation, valid for long time scales (black).

We let t1 = t and t2 = εαt. Then, our equation becomes

ε
(
∂2t1 + 2ε

α∂t1t2 + ε
2α∂2t2

)
x+ ε (∂t1 + ε

α∂t2) x+ x = cos t1(
ε∂2t1︸︷︷︸

1

+ 2ε1+α∂t1t2︸ ︷︷ ︸
2

+ ε1+2α∂2t2︸ ︷︷ ︸
3

)
x+

(
ε∂t1 + ε

1+α∂t2
)
x+ x︸︷︷︸

4

= cos t1

The natural choice is 3 ∼ 4 , which yields α = −1/2. This indeed results in 3 and 4 being of leading
order. So, we now have(

ε∂2t1 + 2ε
1/2∂t1t2 + ∂

2
t2

)
x+

(
ε∂t1 + ε

1/2∂t2

)
x+ x = cos t1

Our leading-order expression is O (1) :

∂2t2x0 + x0 = cos t1
x0 = cos t1 +A(t1) sin(t2) + B(t1) cos(t2).

Now, we look to our initial conditions. x0(0, 0) = 0 yields

0 = 1+ B(0) → B(0) = −1,

while our other initial condition becomes
(
∂t1 + ε

−1/2∂t2
)
x
∣∣
0,0

= 0. The leading-order expression from
this term is thus ∂t2x

∣∣
0,0

= 0, and so we get

∂t2x = A(t1) cos(t2) − B(t1) sin(t2) → A(0) = 0.
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Next, we take x ∼ x0 + ε1/2x1 and look at our O
(
ε1/2

)
expression:

∂2t2x1 + 2∂t1t2x0 + ∂t2x0 + x1 = 0

In order to eliminate secular terms, we want to set 2∂t1t2x0 + ∂t2x0 = 0. We examine this term:

2∂t1t2x0 + ∂t2x0 = 2A
′(t1) cos(t2) − 2B ′(t1) sin(t2) +A(t1) cos(t2) − B(t1) sin(t2)

So, grouping sines and cosines, we want 2A ′(t1) +A(t1) = 0 and 2B ′(t1) + B(t1) = 0. This yields

A(t1) = k1e
−t1/2, B(t1) = k2e

−t1/2.

Our initial conditions yield k1 = 0 and k2 = −1, and so we finally end up with

x0 = cos(t1) − e−t1/2 cos(t2)
⇓

x0 = cos(t) − e−t/2 cos
(
ε−1/2t

)
.

6. Friedrichs’ (1942) model problem for a boundary layer in a viscous fluid is

ε
d2y

dx2
= a−

dy

dx

for 0 < x < 1 and y(0) = 0, y(1) = 1, and a is a given positive constant. After finding the first term
of the inner and outer expansions, derive a composite expansion for the solution to this problem.

Our leading-order outer equation is

0 = a− y ′ → yout = ax+ C.

We can fit either boundary condition with this constant, so for now, we leave C general. Next, for the
boundary layer, we rescale x as x̂ = (x− xB)/ε

α :

ε1−2αy ′′︸ ︷︷ ︸
1

+ ε−αy ′︸ ︷︷ ︸
2

− a︸︷︷︸
3

= 0

Matching 1 ∼ 2 gives α = 1, which appears to be a reasonable expansion. Then our equation becomes

1

ε
y ′′ +

1

ε
y ′ − a = 0.

The leading-order equation is

y ′′ + y ′ = 0

y ′′ = −y ′

y ′ = Ae−x̂

yin = −Ae−x̂ + B

If we take x̂ → ∞, then yin approaches the value B. If, on the other hand, we were to take x̂ → −∞, then
yin would be unbounded. So, we deduce that the boundary layer occurs at x = 0 in order for our limits to
make sense. Solving yin(0) = 0 yields

0 = −A+ B → yin = A
(
1− e−x̂

)
,
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and solving yout(1) = 1 yields

1 = a+ C → yout = ax+ 1− a.

Now, we match.

lim
x̂→∞yin = A, lim

x→0
yout = 1− a

So, we have A = 1− a = yoverlap, and so our final solution is

y ∼ yin + yout − yoverlap = (1− a)
(
1− e−x/ε

)
+ ax

77



Fall 2015

1. Consider the system

ẋ = −y− x3

ẏ = x5.

(a) Is the equilibrium (x, y) = (0, 0): (i) linearly stable; (ii) linearly asymptotically stable; (iii) hyper-
bolic? What do your answers imply about the nonlinear stability of the equilibrium?

(b) Find a Liapunov function for the system of the form

V(x, y) = Ax6 + By2.

What can you conclude about the nonlinear stability of (0, 0) from the Liapunov function?

(a) We compute the Jacobian of our system at the point (0, 0) :

J =

[
−3x2 −1
5x4 0

]
→ J

∣∣
0,0

=

[
0 −1
0 0

]
→ λ = 0, 0.

Since both of our eigenvalues are zero, we have that this equilibrium is linearly stable, but not linearly
asymptotically stable and not hyperbolic. Since linear stability analysis fails here, we do not know anything
about the nonlinear stability of the equilibrium.

(b) We compute dV/dt :

dV

dt
= 6Ax5ẋ+ 2Byẏ

= 6Ax5
(
−y− x3

)
+ 2Byx5

= −6Ax8 + (2B− 6A)yx5

We set 2B = 6A and A > 0. For simplicity, we choose A = 1. This yields

dV

dt
= −6x8 6 0 for all x, y ∈ R.

So, we have that V(x, y) = x6 + 3y2 decreases or remains constant along trajectories, and V(0, 0) = 0 but
is positive elsewhere. So, we have a Liapunov function (though not a strict one, as dV/dt

∣∣
x=0

= 0 for any
choice of y ∈ R), and so our fixed point is Liapunov stable but not asymptotically stable.
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2. Consider the discrete dynamical system with iterates xn given by the map

xn+1 = −µxn − x3n,

where µ is a real parameter.

(a) Find the fixed points of the system as a function of µ and determine their linearized stability.

(b) What kind of bifurcation occurs at xn = 0 as µ increases through µ = 1?

(c) If xn is small and µ = 1+ ε is close to 1, show that

xn+2 ≈ (1+ 2ε)xn + 2x3n

after neglecting smaller terms. Determine whether the bifurcation in (b) is subcritical or super-
critical.

(a) To find the fixed points, we set xn+1 = xn :

x̄ = −µx̄− x̄3

0 = (1+ µ)x̄+ x̄3

0 = x̄
(
1+ µ+ x̄2

)
x̄ = 0, ±

√
−1− µ

Note that the second pair of fixed points only exists for µ < −1. Now, to find their stability, we compute
f ′(x̄) for each point:

f ′(x̄) = −µ− 3x̄2

⇓
f ′(0) = −µ

f ′
(
±
√
−1− µ

)
= −µ+ 3(1+ µ) = 2µ+ 3

So, we have that

x̄ = 0 is


unstable : µ < −1

stable : µ ∈ (−1, 1)

unstable : µ > 1

x̄ = ±
√
−1− µ are both

{
unstable : µ < −2

stable : µ ∈ (−2,−1)

(b) As µ increases through µ = 1, x̄ = 0 moves from being stable to unstable. Its eigenvalue is passing
through λ = −1, and there are no other fixed points around this region for it to interact with, so we have a
period-doubling bifurcation.

(c) If xn is small (we’ll say 0 < xn < 1) and µ = 1+ ε is close to 1, then we compute xn+2 :

xn+2 = −µxn+1 − x
3
n+1

= µ(µxn + x3n) + (µxn + x3n)
3

= µ2xn + µx3n + µ3x3n + 3µ2x5n + 3µx7n + x9n

= (1+ 2ε+ ε2)xn + (1+ ε)x3n + (1+ 3ε+ 3ε2 + ε3)x3n + O
(
x5n
)

≈ (1+ 2ε)xn + 2x3n.
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This value is larger than xn, even though the terms xn are small. As xn grows larger, these additional terms
compound, rather than dying off, so there is no stable orbit which we are converging to. Therefore, we have
a subcritical period-doubling bifurcation.

3. Find among all continuous curves of length ` in the upper half-plane of R2 passing through (−a, 0)
and (a, 0), the one that, together with the interval [−a, a], encloses the largest area. Then, compute
the maximum area too.

Hint: Youmay want to use the symmetry of the problem to your advantage! Also, note that the length
of the curve ` does not include the length of the interval 2a on the horizontal axis.

Our goal is to minimize the following functional:

2

∫a
0

f(x)dx

subject to the following constraints:

2

∫a
0

√
1+ f ′2 dx = `, f ′(0) = 0, f(a) = 0.

Using the method of Lagrange Multipliers, we set

h = f+ λ
√
1+ f ′2

and use the Euler-Lagrange equation
∂h

∂f
=
d

dx

[
∂h

∂f ′

]
.

Computing these terms, we get

1 =
d

dx

[
λf ′√
1+ f ′2

]
x+ c =

λf ′√
1+ f ′2

Plugging in the condition f ′(0) = 0, we get c = 0. So, we now have

x =
λf ′√
1+ f ′2

x
√
1+ f ′2 = λf ′

x2
(
1+ f ′2

)
= λ2f ′2

x2 =
(
λ2 − x2

)
f ′2

f ′2 =
x2

λ2 − x2

f ′ = ± x√
λ2 − x2

As f > 0 for x > 0 and as f(a) = 0, we know that f must be concave-down rather than concave-up , and so
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we choose the (−) from the (±). Now, we have

f ′ = −
x√

λ2 − x2

f = −

∫
x√

λ2 − x2
dx

f =
1

2

∫
u−1/2 du (u = λ2 − x2, du = −2xdx)

f = u1/2 + C

f =
√
λ2 − x2 + C

The boundary condition f(a) = 0 yields

C = −
√
λ2 − a2 → f(x) =

√
λ2 − x2 −

√
λ2 − a2.

Now, we solve for λ :

` = 2

∫a
0

√
1+ f ′2 dx

= 2

∫a
0

√
1+

x2

λ2 − x2
dx

= 2

∫a
0

√
λ2

λ2 − x2
dx

= 2λ

∫a
0

1√
λ2 − x2

dx

= 2λ

∫ arcsin(a/λ)
0

du (x = λ sinu, dx = λ cosudu)

= 2λ arcsin
(a
λ

)
So, λ is the value such that

2λ arcsin
(a
λ

)
= `.

Finally, we compute the maximum area:

2

∫a
0

f(x)dx = 2

∫a
0

(√
λ2 − x2 −

√
λ2 − a2

)
dx

= −2a
√
λ2 − a2 + 2

∫a
0

√
λ2 − x2 dx

= −2a
√
λ2 − a2 + 2

∫ arcsin(a/λ)
0

λ2 cos2 udu (x = λ sinu)

= −2a
√
λ2 − a2 + λ2

∫ `/2λ
0

(cos(2u) + 1)du

= −2a
√
λ2 − a2 + λ2

[
1

2
sin(2u) + u

]`/2λ
0

= −2a
√
λ2 − a2 + λ2

[
1

2
sin
(
`

λ

)
+
`

2λ

]
= −2a

√
λ2 − a2 +

λ2

2
sin
(
`

λ

)
+
`λ

2
,

where λ is given as above.
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4. Consider a simple rectangular domainΩ =
{
(x, y) ∈ R2

∣∣ 0 < x < a, 0 < y < b}with a > b, and the
simple heat equation with the following initial and boundary conditions:

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
for (x, y, t) ∈ Ω× [0,∞);

∂u

∂x
(0, y, t) =

∂u

∂x
(a, y, t) = 0 on 0 6 y 6 b, t ∈ [0,∞);

∂u

∂y
(x, 0, t) =

∂u

∂y
(x, b, t) = 0 on 0 6 x 6 a, t ∈ [0,∞);

u(x, y, 0) = f(x, y) on (x, y) ∈ Ω.

(a) Write down the general solution of this problem as a double Fourier series. [Hint: Use the
separation of variables.]

(b) Identify the spatial modes (i.e., Fourier basis functions involving only (x, y) variables, not t)
corresponding to the three lowest frequencies.

(c) Determine the solution of the above initial and boundary value problem in the case of f(x, y) ≡
c = a real-valued constant.

(a) We assume u can be written in the form u(x, y, t) = X(x)Y(y)T(t). Then, our PDE can be rewritten as
follows:

ut = uxx + uyy

XYT ′ = X ′′YT + XY ′′T

T ′

T
=
X ′′

X
+
Y ′′

Y
= λ,

where λ ∈ R. So, we can then write

X ′′

X
= λ−

Y ′′

Y
= µ,

for some µ ∈ R. We examine our X-equation first and find the sign of µ.

X ′′ = µX∫a
0

X ′′Xdt =

∫a
0

µX2 dt

X ′X
∣∣a
0
−

∫a
0

(X ′)2 dt = µ

∫a
0

X2 dt (IBP)

−

∫a
0

(X ′)2 dt = µ

∫a
0

X2 dt (boundary terms vanish)

So, µmust be negative, and so we rewrite µ as −µ2. We now have the equation

X ′′ = −µX → X = A sin(µx) + B cos(µx)
X ′ = µ

[
A cos(µx) − B sin(µx)

]
.

The boundary condition X ′(0) = 0 yields A = 0, so we now have

X = B cos(µx), X ′ = −µB sin(µx)

The boundary condition X ′(a) = 0 yields sin(µa) = 0, and so µa = mπ or µ = mπ/a, form ∈ N. Thus,

Xm(x) = cos
(mπ
a
x
)
, m ∈ N.
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Turning to our Y-equation, we now have Y ′′/Y = λ + µ2 = −η2, as the boundary conditions are analogous
to those of X, where η ∈ R. We now are left to solve the same problem as before, but with a replaced by b,
and so we get

Yn(y) = cos
(nπ
b
y
)
, n ∈ N.

Finally, we are left to solve the T -equation:

T ′ = λT → T ′ = −
(
µ2m + η2n

)
T → T = Ce−(µ

2
m+η2n)t

where
µm =

mπ

a
, ηn =

nπ

b
.

So, u(x, y, t) has the form

u(x, y, t) =

∞∑
m=0

∞∑
n=0

Cmn cos (µmx) cos (ηny) e−(µ
2
m+η2n)t.

Now, we plug in our boundary condition u(x, y, 0) = f(x, y) :

∞∑
m=0

∞∑
n=0

Cmn cos(µmx) cos(ηny) = f(x, y).

We can then solve for the coefficients Cmn of this double Fourier series and plug back into the general
solution given above.

(b) The spatial modes corresponding to the three lowest frequencies are m = n = 0, then m = 1, n = 0 and
m = 0, n = 1:

1, cos
(π
a
x
)
, cos

(π
b
y
)
.

(c) If f(x, y) = c, then our constants are defined by

∞∑
m=0

∞∑
n=0

Cmn cos(µmx) cos(ηny) = c.

So, we have Cm,n = c form,n = 0 and zero otherwise. Thus, the solution is simply

u(x, y, t) = c.

5. Consider the following regular Sturm-Liouville problem (RSLP):{
f ′′ +ω2f = g, 0 6 x 6 1

f ′(0) = 0 = f ′(1),

whereω > 0 is not an integer multiple of π.

(a) Find the Green’s function for this RSLP.

(b) What happens if we try this withω = 0?

See Spring 2019 Problem 4 — identical problem.
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6. Find a one-term approximation, valid to order ε, of the solution to the following differential equation

ε
d2y

dx2
+ y

(
dy

dx
+ 3

)
= 0

for 0 < x < 1, with boundary conditions y(0) = −1 and y(1) = 1.

It might be useful to know that∫
dx

−0.5x2 + a
=

√
2

a
tanh−1

(
x

√
1

2a

)
+ b

where a is a positive constant and b is a constant.

It also might be useful to know that tanh is an odd function and that limx→∞ tanh(x) = 1 and
limx→−∞ tanh(x) = −1.

Figure 1: This is a numerical solution of the equation with ε = 0.05 (gray), plotted with my solution
for the one-term approximation (black).

We begin by computing the outer expansion, setting ε = 0 :

y(y ′ + 3) = 0 → y ′ = −3 → y = −3x+ C

Based on the image, we expect an interior layer. So, we use our boundary conditions to get the outer solution
for the left and right sides:

y(0) = −1 → yL = −3x− 1

y(1) = 1 → yR = −3x+ 4

Now,we compute our inner layer. Weguess that the boundarywill occur atx = 0.5, sowe set x̂ = (x−0.5)/εα.
Now, our equation becomes

ε1−2αy ′′︸ ︷︷ ︸
1

+ ε−αyy ′︸ ︷︷ ︸
2

+ 3y︸︷︷︸
3

= 0

Matching 1 ∼ 2 yields α = 1. So, our leading-order equation is y ′′ + yy ′ = 0, which becomes

d2y

dx̂2
= −y

dy

dx̂∫
d2y

dx̂2
dx̂ = −

∫
ydy

y ′ = −
1

2
y2 +A
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Dividing out and integrating, using the given hint, we get

x̂+ B =

∫
dy

−0.5y2 +A

x̂+ B =

√
2

A
tanh−1

(
y

1√
2A

)
x̂

√
A

2
+ B = tanh−1

(
y

1√
2A

)
tanh

(
x̂

√
A

2
+ B

)
=

y√
2A

y(x̂) =
√
2A tanh

(
x̂

√
A

2
+ B

)

Since we want yin = 0 at x̂ = 0, we set B = 0. So, our expression is now

yin =
√
2A tanh

(
x̂

√
A

2

)

Lastly, we want to match our inner and outer solutions as we move out of the boundary.

lim
x→0.5

yL = −
5

2
lim
x→0.5

yR =
5

2

lim
x̂→−∞yin = −

√
2A lim

x̂→∞yin =
√
2A

So, we require
√
2A = 5/2. Our overlap in the left region is thus −5/2 and our overlap in the right region is

5/2. So, our inner solution becomes

yin =
5

2
tanh

(
5

4
x̂

)
Note that our overlap in the left region is thus −5/2 and our overlap in the right region is 5/2. Moreover,
yL + 5/2 = yR − 5/2 = −3x + 3/2, and so our outer solutions combine into one expression and we get the
composite solution

y(x) = −3x+
3

2
+
5

2
tanh

(
5(x− 1/2)

4ε

)
.
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1. Consider the following two sets of coupled ODEs.

Set 1 (Eqs. 1):

dx

dt
= −y− x

(
x2 + y2

)
dy

dt
= x− y

(
x2 + y2

)
Set 2 (Eqs. 2):

dx

dt
= −y+ xy2

dy

dt
= x− x2y

• Show that, for both sets of ODEs, linear stability predicts that the fixed point (x = 0, y = 0) is a
center.

• For one set of ODEs, the fixed point (x = 0, y = 0) is, in fact, a stable spiral. Which one? Is it
possible for the linearized equations to correctly predict the stability of the fixed-point? Why or
why not?

• For one set of ODEs, the fixed point (x = 0, y = 0) is, in fact, a center. Which one? Show that, for
this set of ODEs, closed orbits exist.

We examine the Jacobian of each set of equations:

J(1) =

[
−3x2 − y2 −1− 2xy
1− 2xy −x2 − 3y2

]
→ J(1)

∣∣
0,0

=

[
0 −1
1 0

]
J(2) =

[
y2 −1+ 2xy

1− 2xy −x2

]
→ J(2)

∣∣
0,0

=

[
0 −1
1 0

]
Both systems have the same Jacobian. The characteristic equation for each is λ2 + 1 = 0, and so we get the
eigenvalues λ = ±i. So, in both cases, the fixed point (0, 0) is a linear center.

To determine the nonlinear behavior of each system, we convert each to polar coordinates. We know that
rṙ = xẋ+ yẏ. So, the ṙ equation for our first system is

rṙ = x
(
−y− xr2

)
+ y

(
x− yr2

)
rṙ = −x2r2 − y2r2

rṙ = −r4

ṙ = −r3

86



Spring 2015 Mimmack

So, we see that for the first system, r decreases with time, and so we have a stable spiral. It is not possible
for the linearized equations for this system to predict its stability, as the system is nonhyperbolic since all
eigenvalues have zero real part. Now, we examine the second equation:

rṙ = xẋ+ yẏ

rṙ = x
(
−y+ xy2

)
+ y

(
x− x2y

)
rṙ = 0

So, we see that for our second system, r remains constant for all time, and so we have closed orbits.

2. Consider the following ODE:
dx

dt
= x(x− a) + b.

• Sketch bifurcation diagrams for 1) b = 0; 2) b = ε; and 3) b = −ε, where ε is a small, positive
constant. (On your bifurcation diagram, indicate stable fixed points with a solid line, unstable
fixed points with a dashed line and label all bifurcations.)

• Sketch a stability diagram. (Recall that a stability diagram will have a and b as axes, and will
indicate regions where there are different numbers of fixed points.)

We start with the case b = 0. Then, the graph of x(x− a) looks like the following, for different values of a :

So, we get the following bifurcation diagram:

If b = ε, then the graph of x(x− a) + ε looks like the following:

So, we get the following bifurcation diagram:
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Finally, if b = −ε, then the graph of x(x− a) − ε looks like the following:

So, we get the following bifurcation diagram:

To sketch our stability diagram, we examine our equilibria in the general case:

x2 − ax+ b = 0 → x =
1

2

(
a±

√
a2 − 4b

)
So, we have no equilibria when b > a2/4, one equilibrium when b = a2/4, and two otherwise. This gives
the following stability diagram:
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